Complesso Impiantistico

di S.S. Romea, km 2,6 n. 272 Ravenna (RA)

Rev. 0 del 06/05/2024

DATI AGGIORNATI AL 31/12/2023

Il presente documento costituisce il **sesto rinnovo** della Dichiarazione Ambientale del "Complesso impiantistico di S.S. Romea Km 2,6 – n. 272 Ravenna", convalidato secondo il Regolamento (CE) 1221/2009 e relativo alla **registrazione EMAS n. IT-000879**. L'oggetto della registrazione comprende tutti gli impianti presenti all'interno del sito impiantistico e le attività ad essi pertinenti gestite da **Herambiente Spa**. Risulta escluso dal campo di applicazione della presente dichiarazione ambientale il Centro di stoccaggio e pretrattamento per rifiuti urbani e speciali anche pericolosi, gestito da Herambiente Servizi Industriali S.r.l..

La Dichiarazione ambientale redatta in conformità ai requisiti del Regolamento CE n. 1221/2009 del 25/11/2009 "EMAS III" e successive modifiche si compone di due parti:

- ⇒ **Parte Generale** contenente le informazioni attinenti all'Organizzazione, alla politica ambientale ed al sistema di gestione integrato.
- ⇒ **Parte Specifica** relativa al singolo sito, nella quale si presentano i dati quantitativi e gli indicatori delle prestazioni ambientali riferiti all'ultimo triennio.

Complesso impiantistico

S.S. Romea, km 2,6, n. 272 Ravenna

Attività svolte nel sito

Trattamento chimico-fisico di rifiuti
Trattamento fanghi
Trattamento meccanico
Smaltimento a terra di rifiuto solidi
pericolosi e non
Stoccaggio di rifiuti non pericolosi
Produzione di energia elettrica da
biogas di discarica

Codice NACE

35.11 "Produzione e distribuzione di energia elettrica"
38.2 "Trattamento e smaltimento dei rifiuti"

SOMMARIO

Н	ERAMBIE	NTE	5
1	LA POL	ITICA DEL GRUPPO HERA	5
2	LA POL	ITICA DEL GRUPPO HERAMBIENTE	7
3	LA GO	/ERNANCE	9
4	LA STR	UTTURA ORGANIZZATIVA	. 10
5	LA STR	ATEGIA GESTIONALE DI HERAMBIENTE	. 12
6		EMA DI GESTIONE INTEGRATO	
		valutazione degli aspetti ambientali	
7		DICATORI AMBIENTALI	
8		MUNICAZIONE	
9		IPLESSO IMPIANTISTICO	
		nni storici	
		ontesto territoriale	
		uadro autorizzativo	
	-	ogetti in corso	
11		CLO PRODUTTIVO	
Τ,		Rifiuti in ingresso al comparto	
		Impianto TM	
	10.2	Rifiuti trattati	
	_	Discariche per rifiuti non pericolosi e pericolosi	
		Rifiuti in ingresso	
	10.3.1 10.3.2	Coltivazione	
	10.3.2	Chiusura provvisoria	
	10.3.4	Copertura finale	
	10.3.5	Captazione e trattamento percolato	
	10.3.6	Recupero energetico biogas	
		Trattamento chimico-fisico	
	10.4.1	Rifiuti trattati	
	10.4.2	Stoccaggio	
	10.4.3	Trattamento emulsioni oleose	
	10.4.4	Omogeneizzazione	
	10.4.5	Trattamento chimico-fisico con eventuale adsorbimento	
	10.4.6	Trattamento chimico-fisico	
	10.4.7	Accumulo e rilancio finale	35
	10.4.8	Sezione ispessimento fanghi	36
	10.5	Impianto Disidrat	. 36
	10.5.1	Rifiuti trattati	37
	10.5.2	Linea fanghi pompabili non pericolosi (Linea 1)	38
	10.5.3	Linea fanghi pompabili pericolosi (Linea 2)	
	10.5.4	Linea fanghi palabili e rifiuti polverulenti (Linea 3)	
	10.5.5	Sezione di stoccaggio rifiuti in uscita	
1:		TIONE DELLE EMERGENZE	
1	2 ASPI	TTI AMBIENTALI DIRETTI	. 42
	12.1	Energia	. 42
	12.1.1	Impianto TM	
	12.1.2	Discariche	42

12.1.3	Trattamento Chimico-fisico	
12.1.4	Impianto Disidrat	
12.2	Consumo idrico	
12.2.1	Impianto TM	
12.2.2	Discariche	
12.2.3	Trattamento Chimico-fisico	
12.2.4	Impianto Disidrat	
12.3	Scarichi idrici	
12.3.1	Scarichi in fognatura	
12.3.2	Scarico in acque superficiali di comparto	
12.4	Suolo e sottosuolo	
12.5	Emissioni in atmosfera	
12.5.1	Emissioni convogliate	
12.5.2	Emissioni diffuse Emissioni ad effetto serra	
12.5.3 12.6		
	Generazione odori	
12.7	Consumo di risorse naturali e prodotti chimici	
12.7.1 12.7.2	Impianto TM	
12.7.2	Discariche Trattamento Chimico-fisico	
12.7.3	Impianto Disidrat	
12.7.4	Generazione di rumore	
12.8	Rifiuti in uscita	
12.9	Impianto TM	
12.9.1	Discariche	
12.9.3	Trattamento Chimico-fisico	
12.9.4	Impianto Disidrat	
12.10	Amianto	
12.11	Pcb e pct	
12.12	Gas refrigeranti	
12.13	Richiamo insetti ed animali indesiderati	
12.14	Impatto visivo e biodiversità	
12.14	Inquinamento luminoso	
	·	
12.16	Radiazioni ionizzanti e non	
12.17	Rischio incidente rilevante	
12.18	Rischio incendio	
	ETTI AMBIENTALI INDIRETTI	
	ETTIVI, TRAGUARDI E PROGRAMMA AMBIENTALE	
)	
	1 – PRINCIPALE NORMATIVA APPLICABILE ERRORE. IL SEGNALIBRO NON È DEFIN	
	2 – COMPLESSI IMPIANTISTICI REGISTRATI EMAS ERRORE. IL SEGNALIBRO NON	È
DEFINITO.		
RIFERIMEN	ITI PER IL PUBBLICO	. 85

HERAMBIENTE

Leader nazionale nella gestione responsabile dei rifiuti, recupero di energia e materia, Herambiente nasce nel 2009 dalla volontà di concentrare l'esclusivo expertise e la ricca dotazione impiantistica del Gruppo Hera in una nuova società in grado di cogliere le prospettive di sviluppo del settore.

Con una storia fatta di innovazione, tecnologia, efficienza, responsabilità e tutela dell'ambiente, Herambiente fornisce un servizio integrato per tutte le tipologie di rifiuti, facendosi carico dell'intera filiera, e opera sul mercato nazionale e internazionale, rappresentando un benchmark di riferimento europeo.

È in questo contesto, dove i temi dell'economia circolare e della gestione responsabile dei rifiuti sono cruciali, che il progetto EMAS ha trovato la sua piena espressione con l'ottica di promuovere il miglioramento continuo delle proprie prestazioni ambientali e il dialogo con il pubblico e le parti interessate per comunicare in modo trasparente i propri impegni per lo sviluppo sostenibile.

LA NOSTRA MISSION

OFFRIRE SOLUZIONI SOSTENIBILI E INNOVATIVE NELLA GESTIONE INTEGRATA DEI RIFIUTI, RISPONDENDO ALLE SFIDE DEL FUTURO DI AZIENDE E COMUNITÀ CREANDO VALORE E NUOVE RISORSE.

1 LA POLITICA DEL GRUPPO HERA

Hera vuole essere la migliore multiutility italiana per i suoi clienti, i lavoratori e gli azionisti, attraverso l'ulteriore sviluppo di un originale modello di impresa capace di innovazione e di forte radicamento territoriale, nel rispetto dell'ambiente.

I Valori di Hera sono:

- Integrità: un Gruppo di persone corrette e leali.
- ▶ Trasparenza: sinceri e chiari verso tutti gli interlocutori.
- Responsabilità personale: impegnati per il bene dell'azienda insieme.
- **Coerenza**: fare ciò che diciamo di fare.

POLITICA PER LA QUALITÀ E LA SOSTENIBILITÀ

Gli obiettivi

Il Gruppo Hera attua un modello di impresa con l'obiettivo di creare valore nel lungo termine per i propri azionisti attraverso la creazione di valore condiviso con i propri stakeholder, e persegue una strategia di crescita multibusiness nelle aree dell'Ambiente, Energia e Servizi Idrici, fondata su principi del proprio Codice Etico, volta a una positiva evoluzione del contesto sociale, ambientale ed economico in cui opera.

La presente Politica, in coerenza con lo scopo dello Statuto Sociale, con la Missione, con i valori e la Strategia, definisce gli impegni per una crescita sostenibile nel tempo, monitorati e riesaminati periodicamente misurando gli impatti sociali, ambientali ed economici derivanti dalle proprie attività.

A tal fine il Gruppo Hera organizza e svolge le attività di impresa anche con la finalità di favorire l'equità sociale, il raggiungimento della neutralità di carbonio, la rigenerazione delle risorse e la resilienza del sistema dei servizi gestiti, a beneficio degli stakeholder e dell'ecosistema territoriale di riferimento, per una transizione giusta.

Gli impegni

- ✓ Contribuire al raggiungimento degli Obiettivi pe lo Sviluppo Sostenibile dell'Agenda ONU 2030 prioritari per le proprie attività, promuovendo le "Partnership per gli obiettivi";
- ✓ Adottare i principi dell'Economia Circolare e garantire la resilienza e competitività in una prospettiva di medio-lungo termine, attraverso lo sviluppo di progetti con essi coerenti e la promozione di sinergie industriali;
- ✓ Essere protagonista nel percorso di transizione energetica verso la neutralità di carbonio, attraverso l'adeguamento delle proprie infrastrutture, la promozione dell'energia da fonti rinnovabili, lo sviluppo di

- soluzioni tecnologiche e comportamenti volti alla riduzione delle emissioni di gas climalteranti dirette e indirette;
- ✓ Attuare, nella consapevolezza della centralità del proprio ruolo, azioni concrete orientate alla mitigazione del cambiamento climatico, perseguendo la gestione responsabile delle risorse naturali e l'adozione di soluzioni volte a produrre effetti sociali e ambientali positivi;
- ✓ Incrementare l'efficienza energetica ei propri asset e servizi, e ridurre il proprio impatto ambientale attraverso la progettazione, l'innovazione e l'uso delle migliori tecnologie disponibili, nonché attraverso una gestione volta all'uso razionale dell'energia e delle risorse, anche attraverso l'estensione della vita utile dei propri asset e il riuso del suolo;
- ✓ Analizzare stabilmente le variazioni del contesto d'azione, determinando i rischi e cogliendo le opportunità connesse, per accrescere gli effetti desiderati e prevenire, o ridurre, quelli indesiderati;
- ✓ Riconoscere il top management quale cardine di implementazione della presente Politica all'interno delle strategie di business, per il raggiungimento degli obiettivi definiti, garantendo la disponibilità di informazioni e risorse per raggiungere gli stessi, nonché favorendo la cooperazione tra le unità aziendali per l'adozione di azioni coordinate;
- ✓ Migliorare le condizioni di lavoro dei propri dipendenti, individuando e adottando efficaci misure di prevenzione degli infortuni e delle malattie professionali per ridurre al minimo livello possibile i rischi per la salute e la sicurezza, nel rispetto delle norme nazionali e sovranazionali applicabili e dei contratti collettivi nazionali di lavoro di riferimento;
- ✓ Garantire la salvaguardia e la tutela delle vite umane a fronte di un evento di crisi, nonché la continuità operativa per minimizzare gli impatti ai territori e alle comunità servite, assicurando un rapido ripristino del normale stato di svolgimento delle attività, in particolare per quanto attiene i servizi essenziali e i servizi di pubblica utilità;
- ✓ Garantire un attento e continuo monitoraggio del rispetto della conformità alla legislazione vigente ed ai requisiti applicabili;
- ✓ Garantire la trasparenza in tutti i processi ed incoraggiare la segnalazione di fatti illeciti o anche solo di sospetti in buona fede, assicurando riservatezza o anonimato, entro i limiti previsti dalle norme vigenti, a coloro che effettuano segnalazioni (whistleblowing);
- ✓ Non tollerare alcuna forma di illegalità, corruzione e frode e sanzionare comportamenti illeciti;
- ✓ Promuovere iniziative volte all'eccellenza, al miglioramento continuo dei sistemi di gestione, dei servizi, delle prestazioni e all'agilità dei processi aziendali, nonché alla soddisfazione dei clienti, dei dipendenti e delle comunità in cui opera attraverso la rapidità nel decidere e la flessibilità nell'allocazione delle risorse;
- ✓ Favorire a tutti i livelli dell'organizzazione la crescita della cultura in ambito salute e sicurezza, qualità, sostenibilità, prevenzione della corruzione, economia circolare e continuità operativa, innovazione anche attraverso il coinvolgimento di fornitori, clienti e partners, promuovendo lo sviluppo delle competenze del personale e motivandolo al miglioramento del senso di responsabilità e della consapevolezza del proprio ruolo;
- ✓ Promuovere il coinvolgimento e la partecipazione dei lavoratori e dei loro rappresentanti nell'attuazione, sviluppo e miglioramento continuo del sistema di gestione per la salute e sicurezza;
- ✓ Promuovere l'acquisto di servizi e prodotti efficienti e sostenibili, valutando i propri fornitori anche in considerazione del loro impegno per il rispetto dei principi espressi nella presente Politica;
- ✓ Garantire l'assenza di discriminazione nei confronti di qualsiasi dipendente che fornisca informazioni riguardanti il rispetto dei principi contenuti in questa Politica;
- ✓ Incentivare il dialogo e il confronto con tutte le parti interessate, tenendo conto delle loro istanze e attivando adeguati strumenti di partecipazione e informazione della prospettiva aziendale, allo scopo di creare valore condiviso e di prevenire ogni forma di reato;
- ✓ Rendere noti gli impegni assunti e i risultati raggiunti tramite la pubblicazione annuale del Bilancio di Sostenibilità.

Il Consiglio di Amministrazione di Hera S.p.A., che rappresenta la Capogruppo, riconosce come scelta strategica l'adozione di un sistema di gestione di Gruppo, che copra l'intera catena del valore dei prodotti e dei servizi forniti (produzione, strutture operative, impianti, distribuzione, logistica), compresa la gestione sostenibile delle risorse, l'approvvigionamento da fornitori e prestatori di servizi. Il sistema di gestione è esteso alle joint venture e integrato nel processo di due diligence in caso di fusioni e acquisizioni.

I vertici di Hera S.p.A. e delle Società del Gruppo sono coinvolti nel rispetto e nell'attuazione degli impegni contenuti nella presente Politica assicurando e verificando periodicamente che sia documentata, resa operante, riesaminata, diffusa a tutto il personale e trasparente a tutti gli stakeholders.

Bologna, 23 marzo 2022

Tomaso Tommasi di Vignano

L'Amministratore Delegato

2 LA POLITICA DEL GRUPPO HERAMBIENTE

POLITICA PER LA QUALITÀ, LA SICUREZZA, L'AMBIENTE E L'ENERGIA

Il Gruppo Herambiente vuole essere la più grande società italiana nel settore del trattamento dei rifiuti. Opera sul mercato nazionale e internazionale e con le sue società tratta tutte le tipologie di rifiuti, urbani e speciali, pericolosi e non, garantendone una gestione efficace. Offre ai clienti servizi ambientali integrati, progetta e realizza bonifiche di siti contaminati e impianti di trattamento, contribuendo alla tutela dell'ambiente e della salute e sicurezza di lavoratori e cittadini.

La dotazione impiantistica si distingue per affidabilità, tecnologie all'avanguardia, elevate performance ambientali con l'obiettivo di perseguire standard di efficienza e redditività, alte percentuali di riciclo e recupero di materia e energia.

La presente politica discende dalla politica del Gruppo Hera e in coerenza con la mission, i valori e la strategia, detta i principi e i comportamenti volti a soddisfare le aspettative degli stakeholder.

In particolare, il Gruppo Herambiente si impegna a rispettare e promuovere quanto di seguito riportato.

Conformità normativa

Herambiente nello svolgimento delle proprie attività si impegna ad operare nel pieno rispetto della normativa comunitaria, nazionale, regionale e volontaria, nonché nel rispetto di accordi e impegni sottoscritti dall'organizzazione con le parti interessate ai fini della tutela dell'ambiente e della salute e sicurezza dei lavoratori. L'azienda rispetta le normative delle nazioni in cui opera applicando inoltre, laddove possibile, standard più elevati.

Sistemi di Gestione

La Direzione adotta quale strumento strategico di sviluppo sostenibile l'applicazione del sistema di gestione integrato "qualità, sicurezza, ambiente e energia". Il Gruppo favorisce la diffusione delle migliori prassi gestionali al proprio interno, includendo anche gli impianti al di fuori del territorio nazionale.

Il miglioramento continuo dei propri processi aziendali è perseguito anche valutando l'adozione di nuovi schemi certificativi pertinenti al business aziendale.

Tutela dell'ambiente

L'impegno alla protezione dell'ambiente e la prevenzione dell'inquinamento si concretizza con una gestione attenta e sostenibile dei processi produttivi e dei servizi erogati, assicurando un puntuale e continuo monitoraggio volto a minimizzare gli impatti ambientali correlati.

Ottimizzazione processi, attività e risorse

Il Gruppo indirizza tutte le società verso un comportamento omogeneo, promuove e razionalizza, laddove possibile, il recupero di risorse naturali, il ricorso all'energia prodotta da fonti rinnovabili, l'efficienza energetica e effettua una gestione delle attività mirata al riciclo e al recupero di materia e energia dai rifiuti.

Sicurezza sul lavoro

Herambiente promuove la sicurezza, la prevenzione e la protezione dei propri lavoratori e dei fornitori che operano per il Gruppo nei luoghi di svolgimento delle attività, garantendo l'adozione di tutte le misure necessarie previste dal sistema di gestione finalizzate alla definizione delle misure di prevenzione, incluse la corretta pianificazione dei lavori, l'adeguata informazione, formazione e addestramento del Personale e la disposizione delle attrezzature necessarie per operare in sicurezza.

L'Azienda persegue la salvaguardia dei lavoratori, delle popolazioni limitrofe e dell'ambiente dai rischi di incidente rilevante, attuando negli impianti produttivi sottoposti a specifica normativa, idonee misure di prevenzione e protezione.

L'Organizzazione diffonde la cultura della responsabilità, della prevenzione e della sicurezza anche attraverso programmi di accrescimento della consapevolezza dei rischi e la promozione di comportamenti responsabili per facilitare il riconoscimento di condizioni non sicure da parte di tutti i soggetti coinvolti, con l'obiettivo di trasformare la sicurezza in un valore personale condiviso, finalizzato al benessere dei lavoratori.

Diffusione della cultura aziendale

Herambiente favorisce il coinvolgimento, la sensibilizzazione e la responsabilizzazione del personale dipendente a tutti i livelli aziendali e dei fornitori sui temi e sugli obiettivi della qualità, dell'ambiente e della sicurezza.

L'azienda sostiene il dialogo e il confronto con tutte le parti interessate, con gli organi di controllo e con le Autorità competenti nell'ottica della massima trasparenza e attiva strumenti di partecipazione e informazione chiara della politica aziendale al fine di crearne un valore condiviso.

Herambiente diffonde un pensiero ambientalmente responsabile, offrendo la possibilità a cittadini e studenti di effettuare visite guidate presso gli impianti, per fornire una visione completa e trasparente del processo di trattamento dei rifiuti e accrescere nelle nuove generazioni la cultura dello sviluppo sostenibile.

Sostiene e partecipa attivamente alle attività di ricerca in collaborazione con le università, gli istituti di ricerca e i partner industriali.

Miglioramento continuo e sostenibilità

L'organizzazione definisce obiettivi di miglioramento delle proprie prestazioni ambientali e energetiche, della qualità dei servizi erogati e della sicurezza, e determina rischi e opportunità che possono impedire o contribuire a raggiungere i traguardi definiti. Herambiente contribuisce alla diffusione di un modello circolare di produzione e consumo, al fine di raggiungere gli obiettivi globali di sostenibilità ambientale, sociale e economica del pianeta, individuando soluzioni tecnologiche innovative. Nell'ottica dell'economia circolare e della sostenibilità, il rifiuto è considerato come una risorsa, da avviare in via prioritaria al recupero di materia e al riciclo finalizzato alla generazione di nuovi prodotti e, laddove non più possibile, destinandolo alla produzione di energia.

La Direzione di Herambiente è coinvolta in prima persona nel rispetto e nell'attuazione di questi principi, assicura e verifica periodicamente che la presente Politica sia documentata, resa operante, mantenuta attiva, diffusa a tutto il personale del Gruppo sul territorio nazionale e internazionale e resa disponibile al pubblico.

Bologna 20/01/2023

Filippo Brandolini

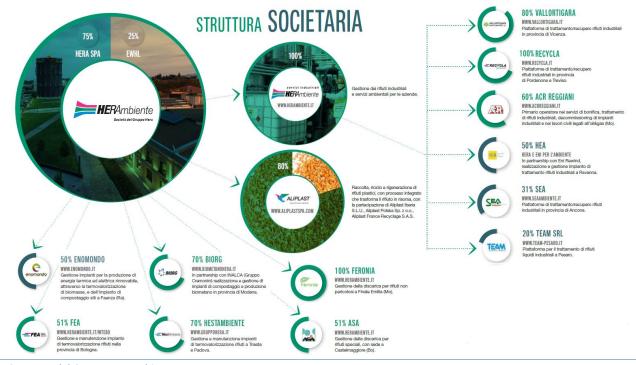
Presidente

Aun fran de.

Andrea Ramonda

Amministratore Delegato

Cenni Storici


Il **Gruppo Hera** nasce alla fine del 2002 da una delle più significative operazioni di aggregazione realizzate in Italia nel settore delle "public utilities", diventando una delle principali multiutility nazionali che opera in servizi di primaria importanza, fondamentali a garantire lo sviluppo del territorio e delle comunità servite. A servizio di cittadini e imprese, opera principalmente nei settori ambiente (gestione rifiuti), idrico (acquedotto, fognature e depurazione) ed energia (distribuzione e vendita di energia elettrica, gas e servizi energia) soddisfacendo i bisogni di oltre 4,2 milioni di cittadini in circa 311 comuni distribuiti principalmente in Emilia-Romagna, Friuli-Venezia Giulia, Marche, Toscana e Veneto.

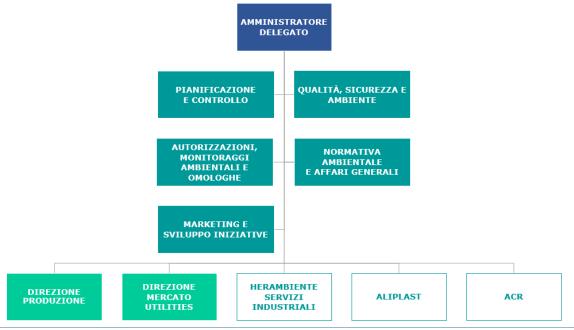
Il **1º** luglio **2009**, mediante conferimento del ramo d'azienda di Hera S.p.A. – Divisione Ambiente ed Ecologia Ambiente e contestuale fusione per incorporazione di Recupera S.r.l., nasce **Herambiente S.r.l.** diventata **Herambiente S.p.A.** da ottobre **2010**.

3 LA GOVERNANCE

Herambiente, operativa dal 2009, è detenuta al 75% dal Gruppo Hera e per il restante 25% da EWHL European Waste Holdings Limited, una società di diritto inglese, posseduta al 50% da British Infrastructure Fund 3i Managed Infrastructure Acquisitions LP e al 50% dal Dutch Pension Fund Stichting Pensioenfonds ABP.

Per dotazione impiantistica e quantità di rifiuti trattati, Herambiente è il primo operatore nazionale nel recupero e trattamento rifiuti grazie anche al contributo di altre società, che operano sul mercato nazionale e internazionale, nelle quali detiene partecipazioni di controllo, frutto del percorso di ampliamento del proprio perimetro societario avviato dal Gruppo già da diversi anni.

La Struttura del Gruppo Herambiente


Le tappe principali di questo percorso, per citare le più rilevanti, hanno visto: la nascita, nel 2014, della controllata Herambiente Servizi Industriali S.r.l., società commerciale di Herambiente dedicata alla gestione dei rifiuti industriali e dei servizi ambientali collegati, nel 2015, l'acquisizione dell'intera partecipazione della controllata HestAmbiente S.r.l., all'interno della quale sono stati conferiti i termovalorizzatori di Padova e Trieste già di titolarità di AcegasApsAgma, l'acquisizione, avviata nel 2015, dell'intero capitale sociale di Waste Recycling S.p.A., che a partire dal 1° luglio 2019 si è fusa per incorporazione in Herambiente Servizi Industriali S.r.l, la fusione per incorporazione e l'acquisizione di rami d'azienda di altre società (Akron S.p.A., Romagna Compost S.r.l., Herambiente Recuperi S.r.l., Geo Nova S.p.A.), che hanno ampliato il parco impiantistico di

Herambiente. Da citare anche la fusione per incorporazione, nel corso del 2017, di Biogas 2015, che deteneva la titolarità degli impianti di recupero energetico insediati nelle discariche del Gruppo, e l'avvio al processo di acquisizione del capitale sociale di Aliplast S.p.A., operante nella raccolta e nel riciclo di rifiuti di matrice plastica e loro successiva rigenerazione. Il percorso di crescita è continuato con la gestione da parte di Herambiente da luglio 2019, in virtù di concessione decennale, della Discarica Operativa di CO.SE.A. Consorzio a Ca' dei Ladri nel comune di Gaggio Montano e, sempre nello stesso mese, l'acquisizione del 100% di Pistoia Ambiente S.r.l., gestore della discarica di Serravalle Pistoiese e annesso impianto di trattamento rifiuti liquidi, consolidando la propria dotazione impiantistica dedicata alle aziende. Dal 1º luglio 2020 la società Pistoia Ambiente si è fusa per incorporazione in Herambiente. Nel 2021 il percorso di crescita è proseguito con la costituzione della società Biorg, nata dalla partnership tra Herambiente e la società Inalca (Gruppo Cremonini) leader nella produzione di carni e nella distribuzione di prodotti alimentari, con la finalità di produrre biometano e compost dalla raccolta differenziata dell'organico e dai reflui agroalimentari. Da citare anche la crescita nel mercato dei rifiuti industriali di Herambiente Servizi Industriali S.r.l., con la costituzione insieme a Eni Rewind, nel 2021, di HEA (Hera e Eni per l'ambiente) e con le acquisizioni di tre realtà: l'80% del Gruppo Vallortigara, il 70% (diventato 100%) di Recycla ed il 31% di SEA. In ultimo, a marzo 2023, è stato acquisito il 60% di ACR Reggiani una delle maggiori realtà italiane nel settore delle bonifiche, trattamento rifiuti industriali, decommissioning di impianti industriali e nei lavori civili legati all'oil&gas, con il successivo conferimento nella nuova società delle attività di bonifica e global services operativo in capo ad HASI.

4 LA STRUTTURA ORGANIZZATIVA

Herambiente, con i suoi 697 dipendenti, ha la responsabilità di gestire tutte le attività operative, commerciali e amministrative degli impianti di gestione rifiuti, con l'obiettivo di razionalizzare gli interventi e perseguire standard di efficienza e redditività, coordinando, inoltre, le attività delle società controllate.

La macrostruttura della società è di tipo funzionale e si compone di una **Direzione generale** che traccia le linee strategiche e guida l'organizzazione di cinque **funzioni di staff** e di due grandi **funzioni di line**. Fanno capo ad Herambiente le società controllate: Herambiente Servizi Industriali con le sue Controllate, Aliplast e ACR.

Organigramma aziendale

Le funzioni di staff hanno il compito, per quanto di propria competenza, di garantire una maggiore focalizzazione sui processi trasversali e di supportare le funzioni di line che svolgono invece attività di carattere gestionale. In staff alla Direzione generale si posiziona il servizio "Qualità, Sicurezza e Ambiente" che redige, verifica e mantiene costantemente aggiornato il sistema di gestione integrato, garantendo l'applicazione omogenea delle disposizioni in campo ambientale e di sicurezza e delle disposizioni trasversali di sistema, oltre

a dedicarsi anche al mantenimento, sviluppo e promozione del **progetto EMAS**. All'interno del QSA si colloca anche il Servizio Prevenzione e Protezione che cura tutte le tematiche relative alla sicurezza. In line si colloca:

- La **Direzione Produzione** che sovraintende la gestione degli impianti di smaltimento, trattamento e recupero di rifiuti urbani e speciali, di origine urbana e industriale, organizzati in cinque Business Unit:
 - Termovalorizzatori
 - Discariche
 - Compostaggi e Digestori
 - Impianti rifiuti industriali
 - Impianti di selezione e recupero.
- La Direzione Mercato Utilities che accorpa la struttura "Vendite Utilities" a presidio della vendita e sviluppo commerciale dei servizi e delle capacità di recupero, trattamento e smaltimento degli impianti del perimetro di Herambiente e terzi, "Accettazione rifiuti" e "Flussi Logistici e PEA", finalizzata a favorire l'ottimizzazione dei flussi commercializzati verso impianti interni o di terzi e la gestione delle stazioni di trasferimento e piattaforme ecologiche.

Il parco impiantistico del Gruppo Herambiente è il più significativo nel settore in Italia ed in Europa: circa 95 impianti che coprono tutte le filiere di trattamento ed una struttura commerciale dedicata.

Termovalorizzatori

I termovalorizzatori sono in grado di "valorizzare" i rifiuti urbani e speciali non pericolosi e non recuperabili tramite combustione, recuperando energia sia sotto forma di energia elettrica che di calore. Gli impianti sono da tempo coinvolti in piani di ammodernamento continuo e potenziamento, mirato a soddisfare la crescente richiesta di smaltimento del territorio, compatibilmente con le esigenze sempre più stringenti di tutela ambientale. È proprio nell'ottica della sostenibilità che si perseguono anche programmi di efficientamento energetico continuo degli impianti. Per il contenimento delle emissioni sono previsti sistemi avanzati di trattamento dei fumi e sistemi di controllo delle emissioni che rispondono alle migliori tecniche disponibili, le Best Available Techniques (BAT), come definite dall'Unione Europea.

ONLINE LE EMISSIONI DEI TERMOVALORIZZATORI

Grazie a un **sistema di monitoraggio in continuo**, attraverso analizzatori automatici in funzione 24 ore su 24, tutti i principali parametri delle emissioni prodotte sono analizzati, memorizzati, trasmessi agli Enti di controllo, pubblicati e aggiornati ogni mezz'ora sul sito web di Herambiente, visibili a chiunque per garantire la massima trasparenza. Per ogni parametro sono indicate le concentrazioni massime ammesse dalla normativa (D. Lgs. 152/2006 e s.m.i.) e dalle singole Autorizzazioni Integrate Ambientali, più restrittive rispetto a quelle di settore.

Selezione e recupero

In linea con l'obiettivo di recuperare la maggiore quantità possibile di materia, riducendo al contempo il volume finale dei rifiuti da smaltire, Herambiente è dotata di impianti di selezione e di separazione meccanica. Gli impianti di selezione

trattano la frazione secca proveniente da raccolta differenziata dei rifiuti urbani (plastica, vetro, carta, cartone, lattine, legno, metalli ferrosi, materiali misti), valorizzando la raccolta differenziata e rendendo possibile l'effettivo reinserimento dei materiali nei cicli produttivi, anche attraverso il conferimento ai consorzi di filiera. La separazione meccanica permette, invece, il recupero di materiali anche dalla raccolta indifferenziata, separando la frazione secca da quella umida e rendendo possibile il recupero dei metalli.

Anello importante nel sistema di gestione integrato Herambiente, la selezione rende possibile l'effettivo reinserimento di materiali nel ciclo produttivo, anche attraverso il conferimento ai Consorzi di Filiera.

Impianti rifiuti industriali

Gli impianti dedicati ai rifiuti industriali sono diversificati e offrono un'ampia gamma di possibilità di trattamento: trattamento chimico-fisico e biologico di rifiuti liquidi e fanghi, pericolosi e non pericolosi, in grado di trasformare grazie

Di particolare interesse l'impianto Disidrat dedicato ai fanghi industriali, che per varietà di rifiuti trattati, dimensioni e caratteristiche tecnologiche si pone tra le eccellenze europee del settore.

all'utilizzo di determinati reattivi e specifiche dotazioni tecnologiche, un rifiuto, generalmente liquido, in un refluo con caratteristiche idonee allo scarico, incenerimento di solidi e liquidi, combustione di effluenti gassosi nonché trattamento d'inertizzazione, che consente di trattare e rendere innocui i rifiuti inglobando gli inquinanti presenti in una matrice cementizia. La Business Unit è caratterizzata da impianti

complessi in grado di garantire una risposta esaustiva alle esigenze del mercato dei rifiuti industriali (es. aziende farmaceutiche, chimiche e petrolchimiche).

Compostaggi e digestori

La frazione organica della raccolta differenziata viene valorizzata attraverso la produzione e commercializzazione di compost di qualità e di energia elettrica. Negli impianti di compostaggio tale frazione organica viene trattata mediante un

naturale processo biologico, in condizioni controllate, per diventare un fertilizzante da utilizzare in agricoltura o ammendante per ripristini ambientali. I biodigestori, invece, grazie a un processo di digestione anaerobica a secco consentono di ricavare biogas dai rifiuti organici e generare energia elettrica totalmente rinnovabile. Uno dei principali vantaggi dell'implementazione dei biodigestori presso gli impianti di compostaggio è che le sostanze maleodoranti contenute nei rifiuti organici sono le prime a trasformarsi in gas metano, riducendo notevolmente le emissioni odorigene sia nel processo sia durante l'utilizzo del compost, rispetto a quanto avviene nei tradizionali impianti di compostaggio.

A ottobre 2018 è stato inaugurato il nuovo impianto a Sant'Agata Bolognese per la produzione, dal trattamento dei rifiuti provenienti dalla raccolta differenziata di organico e sfalci/potature, di biometano, combustibile rinnovabile al 100% da destinare all'utilizzo per autotrazione.

L'impianto è il primo realizzato da una multiutility in Italia per valorizzare al massimo scarti e rifiuti.

Discariche

Destinate allo smaltimento dei rifiuti tramite operazioni di stoccaggio definitivo sul suolo o nel suolo, la quota dei rifiuti smaltiti in discarica è in **netta e progressiva diminuzione**, in coerenza con gli obiettivi comunitari che puntano a ridurre e tendenzialmente azzerare il ricorso a questo tipo di smaltimento. Ad oggi, tuttavia, la discarica resta l'unica destinazione possibile per le frazioni non recuperabili dalle quali, tuttavia, è possibile **estrarre valore sotto forma di biogas naturalmente prodotto** durante la decomposizione della componente organica dei rifiuti, inviato a idonei generatori per la produzione di energia elettrica. Le discariche gestite da Herambiente sono prevalentemente per rifiuti non pericolosi che rappresentano la quasi totalità degli impianti di discarica della società; di queste più della metà sono in fase di postgestione ovvero nella fase successiva all'approvazione della chiusura della discarica da parte dell'Autorità Competente.

DISCARICHE IN FASE POST-OPERATIVA

Tale fase è funzionale ad evitare che vi siano impatti negativi sull'ambiente prevedendo attività di presidio, controllo e monitoraggio del sito in continuità alla fase operativa. Herambiente, nelle discariche esaurite, si impegna costantemente nella tutela ambientale garantendo il mantenimento di un sistema di gestione ambientale attivo e l'applicazione di specifici piani di sorveglianza e controllo.

5 LA STRATEGIA GESTIONALE DI HERAMBIENTE

Il Gruppo Herambiente con il suo parco impiantistico ampio e articolato e un network europeo di operatori qualificati si propone anche a livello internazionale come una concreta risposta al problema rifiuti, grazie a investimenti in tecnologie sempre all'avanguardia ed ai costanti interventi di potenziamento e rinnovamento che garantiscono sviluppo, alte performance ambientali, trasparenza e innovazione. L'attività di Herambiente si caratterizza per una gestione integrata dei rifiuti che risponde alle priorità fissate dalle direttive europee di settore, offrendo un'ampia gamma di servizi a valore aggiunto, che abilitano la transizione all'economia circolare.

I NOSTRI NUMERI NEL 2023

7,2 MLN tonnellate di rifiuti trattati **928 GWh**_E di Energia Elettrica prodotta

Più di 8,5 MLN Sm³ di biometano prodotto

Ogni tipologia di rifiuto viene gestita in modo responsabile e a 360°, in ottica di economia circolare, trasformando i rifiuti da problema in risorsa. Viene minimizzato il più possibile il ricorso alla discarica, a favore invece di riciclo e recupero. Herambiente ha infatti ridotto la percentuale dei conferimenti in discarica, passati dal 30,1% nel 2009 al 3,8% nel 2023, incrementando i quantitativi di rifiuti avviati a selezione o recupero ed alla termovalorizzazione. La leadership di Herambiente deriva certamente dalle quantità di rifiuti raccolti e trattati e dal numero di impianti gestiti; tuttavia, il primato non è solo una questione di numeri, ma è dato anche dalla capacità di perseguire una gestione responsabile delle risorse naturali e il ricorso a soluzioni in grado di migliorare l'impatto ambientale delle proprie attività. Da sottolineare come la politica ambientale di

Herambiente, data la complessità del parco impiantistico in gestione, è frutto di una **strategia di governo unica** che, in virtù di risorse non illimitate a disposizione, comporta la definizione di priorità, privilegiando quegli interventi che massimizzano il ritorno ambientale ed i benefici di tutti gli stakeholder compresi gli investitori. Il tutto nel segno di una continua proiezione al futuro e all'innovazione, testimoniata non solo dai suoi volumi d'affari, ma anche da una spiccata capacità di programmazione che risponde alla grande sfida – europea e mondiale - della transizione ecologica.

VEDERE I RIFIUTI COME RISORSA È LA CHIAVE DI UN MONDO La pianificazione strategica aziendale del Gruppo che prende vita dalla *mission* aziendale è recepita nel *Piano Industriale* predisposto annualmente dall'Organizzazione con validità quadriennale. Nel nuovo Piano Industriale 2024-2027 prosegue il percorso di crescita intrapreso dal Gruppo con investimenti e progetti concreti per l'economia circolare e la transizione energetica. Le linee del Piano oltre a

garantire iniziative per lo sviluppo di fonti rinnovabili e l'ammodernamento delle proprie tecnologie, sono anche rivolte alla crescita di un'impiantistica innovativa e all'avanguardia sempre più focalizzata sulla qualità e personalizzazione del prodotto target, identificando nel valore che il cliente riconosce nel prodotto rigenerato la propria redditività, con l'obiettivo di offrire le migliori soluzioni per il massimo recupero possibile di materia ed energia allungando la catena del recupero in ottica di "economia circolare" nel rispetto dell'ambiente.

Gli investimenti e la strategia di sviluppo sono mirati al miglioramento continuo dell'intera organizzazione, attraverso l'individuazione di priorità e di interventi che massimizzino il ritorno ambientale in accordo con tutte le parti interessate, pertanto, non tutti gli anni è possibile individuare per singolo impianto Herambiente dei programmi di miglioramento ambientale corposi. I **programmi di miglioramento ambientale**, riportati nelle dichiarazioni ambientali, non possono quindi essere considerati singolarmente ma devono essere valutati in un'ottica d'insieme, che nasce dalla necessità di coniugare la propria vocazione imprenditoriale con l'interesse di tutte le parti coinvolte, attuando le scelte di pianificazione compiute dalle istituzioni e creando allo stesso tempo valore per i propri azionisti e per il territorio con investimenti innovativi nel rispetto dell'ambiente e dei cittadini.

La sostenibilità e l'Economia Circolare

Lo sviluppo sostenibile e la transizione verso un'economia circolare sono obiettivi prioritari inseriti nell'Agenda ONU al 2030. È in questo contesto, dove i temi dell'economia circolare e della gestione responsabile dei rifiuti sono oggi cruciali, che si cala Herambiente, leader nazionale nella gestione responsabile dei rifiuti.

Il Gruppo Herambiente con la sua grande esperienza esercita un ruolo guida per una transizione ambientale sostenibile, con l'obiettivo di perseguire standard di efficienza e redditività, alte percentuali di riciclo e recupero di materia ed energia. Gli scarti una volta trattati da Herambiente diventano compost, energia, calore, plastica rigenerata: l'economia circolare diventa così concreta.

Herambiente è impegnata nel massimizzare il recupero energetico da tutti i processi di trattamento e smaltimento gestiti e anche l'anno 2023 è stato caratterizzato dal proseguimento delle iniziative, già avviate, volte al recupero di materia ed efficienza energetica rispetto allo "smaltimento" continuando la forte accelerazione verso il processo di trasformazione delle proprie attività industriali in ottica di "economia circolare".

Da ricordare l'acquisizione nel 2017 di **Aliplast S.p.A**, prima azienda italiana a raggiungere la piena integrazione lungo tutto il ciclo di vita della plastica producendo così materiali disponibili al riutilizzo e, nel 2018, l'inaugurazione **dell'impianto di biometano di Sant'Agata Bolognese (BO)**, il primo realizzato da una multiutility italiana, per la produzione di biometano da trattamento dei rifiuti provenienti dalla raccolta differenziata di organico e sfalci/potature, rendendo possibile un circuito virtuoso che parte dalle famiglie e ritorna ai cittadini. Successivamente, il medesimo obiettivo ha trovato efficacia nel **nuovo impianto per la produzione di biometano a Spilamberto**, della nuova società Biorg, avviato a fine 2022. Il continuo impegno alla circolarità è inoltre testimoniato dalla realizzazione attualmente in corso d'opera, a Imola (BO), dell'impianto di riciclo della fibra di carbonio primo nel suo genere in Europa. Una soluzione innovativa che va incontro alle esigenze di diversi settori industriali di riferimento.

Il Gruppo Herambiente si impegna inoltre in progetti che hanno lo scopo di fornire un contributo concreto all'analisi del contesto ambientale per la tutela dell'ambiente in cui si collocano i propri siti impiantistici a garanzia di una gestione trasparente. Tra i vari si menziona il progetto innovativo di biomonitoraggio "Capiamo" che si affida alle api, quali bioindicatori chiave per studiare la qualità dell'ambiente. Il progetto ha interessato il termovalorizzatore di Pozzilli (IS) e l'impianto di compostaggio con produzione di biometano di Sant'Agata Bolognese (BO), mentre attualmente sono coinvolti la discarica di Serravalle Pistoiese (PT), la discarica di Cordenons (PN) ed il termovalorizzatore di Padova (PD).

6 IL SISTEMA DI GESTIONE INTEGRATO

L'attenzione profusa da Herambiente su qualità, sicurezza e ambiente è resa più tangibile dai risultati raggiunti in questi anni in ambito certificativo. Per contribuire alla protezione dell'ambiente e alla salvaguardia delle risorse e dei lavoratori, Herambiente ha stabilito un proprio sistema di gestione integrato che viene costantemente attuato, mantenuto attivo e migliorato in continuo, ai sensi delle norme UNI EN ISO 9001:2015, 14001:2015, UNI ISO 45001:2018 e del Regolamento CE 1221/2009 (EMAS) come modificato dai Regolamenti UE 2017/2015 e 2018/2026. Si aggiunge l'implementazione di un "sistema energia" finalizzato al monitoraggio e miglioramento dell'efficienza energetica sugli impianti del Gruppo che ha visto il conseguimento della certificazione ISO 50001 nel corso del 2020.

Herambiente ha inoltre conseguito, nel corso del 2018, la **Certificazione di sostenibilità del biometano** prodotto nel nuovo impianto di Sant'Agata Bolognese che ha previsto lo sviluppo di un sistema di tracciabilità e di un bilancio di massa in accordo allo "Schema Nazionale di Certificazione dei Biocarburanti e dei Bioliquidi".

Il sistema di gestione integrato permette ad Herambiente di:

- gestire gli impatti ambientali e gli aspetti di sicurezza delle proprie attività;
- parantire un alto livello di affidabilità dei servizi offerti verso le parti interessate (cliente, società civile, comunità locale, pubblica amministrazione, ecc.);
- garantire il rispetto delle prescrizioni legali applicabili ed altre prescrizioni;
- definire i rischi e gli obiettivi di miglioramento coerentemente con la propria politica e perseguire il miglioramento continuo delle prestazioni nel campo della sicurezza, gestione ambientale, energia e qualità.

Il sistema di gestione si è evoluto integrando i concetti chiave introdotti dalle nuove versioni delle norme ISO quali il contesto dell'organizzazione, il ciclo di vita e il rischio. Herambiente ha provveduto ad analizzare gli elementi del **contesto** in cui opera, sia interni che esterni, declinati nelle diverse dimensioni (economico, finanziario, assicurativo, normativo, tecnologico, ambientale, sociale, aziendale), a definire i bisogni e le aspettative rilevanti delle **parti interessate** quali soggetti che possono influenzare e/o sono influenzati dalle attività, prodotti e servizi dell'organizzazione, pianificando il proprio sistema secondo la **logica del risk-based**, mirata ad identificare e a valutare rischi e opportunità intesi come effetti negativi o positivi che possono impedire o contribuire a conseguire il proprio miglioramento.

IL PROGETTO EMAS

Nato nel 2005 sotto la regia di Hera Spa – Divisione Ambiente, nel corso degli anni e con la nascita di Herambiente, il progetto è andato ampliandosi con l'obiettivo di una progressiva registrazione EMAS dei principali impianti di Herambiente. Attualmente sono presenti in Herambiente 22 siti registrati EMAS.

In un'ottica di razionalizzazione, l'organizzazione intende mantenere quanto raggiunto in questi anni a livello di registrazione dei propri siti impiantistici, escludendo però quegli impianti non più attivi o minori e quindi non strategici per l'azienda stessa. Tale decisione scaturisce dalla difficoltà di perseguire il requisito del miglioramento continuo delle prestazioni ambientali, alla base del Regolamento EMAS, per siti non più produttivi come le discariche in fase di gestione post-operativa e caratterizzate da standard ambientali già performanti. Il Progetto EMAS rimane comunque strategico per gli impianti attivi di Herambiente prevedendone la futura implementazione per i nuovi impianti realizzati o in corso di realizzazione, compresi quelli acquisiti a seguito di modifiche societarie.

6.1 LA VALUTAZIONE DEGLI ASPETTI AMBIENTALI

Nel rispetto del proprio sistema di gestione ambientale, Herambiente identifica e valuta annualmente gli aspetti ambientali che possono determinare significativi impatti ambientali e le proprie performance ambientali quale elemento qualificante nella scelta delle strategie e dei programmi.

Gli aspetti ambientali possono essere "diretti" se derivano da attività sotto controllo dell'organizzazione o "indiretti" se dipendono da attività di terzi che interagiscono e che possono essere influenzati dall'organizzazione. L'individuazione degli aspetti ambientali considera anche una prospettiva di Ciclo di Vita, valutando la significatività degli aspetti ambientali connessi ai processi/servizi svolti dall'Organizzazione lungo le fasi della loro vita.

Aspetti ambientali valutati da Herambiente

Il processo di valutazione degli aspetti ambientali diretti si fonda sui seguenti tre criteri, ciascuno sufficiente a determinare la significatività dell'aspetto, considerando condizioni di funzionamento normali, transitorie e di emergenza:

- Grado di rispetto delle prescrizioni legali e delle altre prescrizioni applicabili: si adottano limiti interni più restrittivi (mediamente 80% del limite di legge) al fine di garantire all'azienda un elevato margine per poter intraprendere azioni tese ad eliminare o ridurre le cause di potenziali superamenti.
- Entità dell'impatto: è valutato l'impatto esterno in termini quali quantitativi.
- Contesto territoriale e Sensibilità collettiva: si valuta il grado di sensibilità delle parti interessate e dell'ambiente locale in cui l'unità è inserita.

Per la valutazione degli aspetti indiretti, qualora siano disponibili i dati necessari, viene applicato lo stesso criterio di valutazione utilizzato per gli aspetti diretti. L'entità dell'aspetto così determinato viene corretto attraverso un fattore di riduzione che tiene conto del grado di controllo che Herambiente può esercitare sul terzo che genera l'aspetto. Qualora i dati non siano disponibili, la significatività viene valutata attraverso la presenza di richieste specifiche inserite nei contratti o nei capitolati d'appalto ed alla sensibilizzazione del soggetto terzo.

La valutazione degli aspetti ambientali, effettuata annualmente da Herambiente, si basa sui dati di esercizio dell'anno precedente e sui risultati dei monitoraggi. La significatività si traduce in un maggior controllo operativo rispetto alla prassi ordinaria. Nella presente dichiarazione ambientale ad ogni aspetto ambientale è associato l'esito della valutazione indicato come:

Aspetto significativo —

Aspetto non significativo

GLI INDICATORI AMBIENTALI

Il sistema di gestione ambientale di Herambiente utilizza Indicatori chiave volti a misurare le proprie prestazioni ambientali e il grado di conformità dei processi a criteri più restrittivi rispetto alla normativa. Tali indicatori, da sempre riportati in dichiarazione ambientale, presentano le seguenti caratteristiche:

- Differenziati per Business Unit in base al processo produttivo.
- Applicati su dati quantitativi certi e non stimati.
- Non applicati, tendenzialmente, agli aspetti indiretti.
- Indicizzati rispetto ad un fattore variabile per Business Unit e per aspetto analizzato.

Si è provveduto, inoltre, alla disanima della Decisione UE/2020/519 relativa al documento di riferimento settoriale sulle migliori pratiche di gestione ambientale (BEMP), sugli indicatori di prestazione ambientale settoriale e sugli esempi di eccellenza per il settore della gestione dei rifiuti dalla quale è emersa una sua parziale applicabilità. Risultano, infatti, esclusi dal campo di applicazione del documento di riferimento settoriale gli impianti di Herambiente che effettuano trattamenti ricadenti nell'ambito di applicazione della Direttiva 2010/75/UE¹ relativa alle emissioni industriali (Autorizzazione Integrata Ambientale) e soggette alle Best Available Techniques di settore, quali termovalorizzatori (con annessa piattaforma ecologica), discariche, compostaggi e digestori ed impianti di trattamento chimico-fisico. La Decisione non contempla inoltre i rifiuti industriali e commerciali che non rientrano tra i Rifiuti Solidi Urbani (RSU), tipologie di rifiuto trattate in alcuni siti Herambiente. Relativamente ai pochi impianti Herambiente non ricadenti nella Direttiva 2010/75/UE che trattano rifiuti solidi urbani, per i quali pertanto potrebbero trovare parziale applicazione alcune BEMP della Decisione, preme sottolineare come già sia stata valutata con esito positivo la conformità dei processi svolti alle Migliori Tecniche Disponibili di settore, siano stati adottati criteri volti a definire quando un rifiuto cessa di essere tale (migliori pratiche di gestione ambientale previste dalla BEMP trasversale) e come le fasi dei processi svolti prevedano controlli e operazioni per massimizzare la resa del recupero individuati anche dalla BEMP per il trattamento dei rifiuti. Per questi impianti risultano anche già adottati gli indicatori di prestazione ambientale volti alla valutazione della percentuale di recupero e dell'efficienza energetica.

Dalla disamina della Decisione UE/2020/519 si confermano pertanto gli indicatori di prestazione ambientale, riportati nella seguente tabella, individuati per ogni Business Unit di Herambiente ed applicati nelle dichiarazioni ambientali.

BUSINESS UNIT	INDICATORI
DISCARICHE IN ESERCIZIO	"Efficienza di utilizzo energetico": consumo gasolio/rifiuto in ingresso (tep/tonn) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche "Efficienza di recupero energetico": energia elettrica prodotta/biogas captato (kWh/Nm³)
DISCARICHE IN POST-GESTIONE	"Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche "Efficienza di recupero energetico": energia elettrica prodotta/biogas captato (kWh/ Nm³)
PIATTAFORME DI STOCCAGGIO	"Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore%). Indicatore applicato per scarichi idrici "Rifiuto autoprodotto su rifiuto trattato": quantità di rifiuti autoprodotti distinti in pericolosi e non/rifiuti in ingresso (tonn/tonn)
TERMOVALORIZZATORI	"Energia recuperata da rifiuto": energia elettrica prodotta/rifiuto termovalorizzato (tep/tonn) "Efficienza di utilizzo energetico": energia totale consumata/rifiuto termovalorizzato (tep/tonn) "Utilizzo di energia da fonte rinnovabile": energia rinnovabile consumata/energia totale consumata (valore %) "Efficienza di utilizzo di risorsa Idrica": acqua utilizzata/rifiuto termovalorizzato (m³/tonn) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche "Fattori di emissione macroinquinanti": quantità di inquinante emesso all'anno/rifiuto termovalorizzato (kg/tonn) "Fattori di emissione microinquinanti": quantità di inquinante emesso all'anno/rifiuto termovalorizzato (kg/tonn) "Fattori di emissione dei Gas Serra": quantità di CO₂ emessa/rifiuto termovalorizzato (tonn CO₂/tonn) "Fattore di utilizzo reagenti": consumo reagenti per trattamento fumi/rifiuto termovalorizzato (tonn/tonn) "Rifiuto autoprodotto su Rifiuto termovalorizzato": quantità di rifiuti autoprodotti distinti in pericolosi e non/rifiuti in ingresso (tonn/tonn)
COMPOSTAGGI E DIGESTORI	"Efficienza del processo produttivo": compost venduto-prodotto/rifiuto trattato (valore %) "Energia recuperata da rifiuto": energia prodotta/rifiuto trattato (tep/tonn) "Utilizzo di energia da fonte rinnovabile": energia rinnovabile consumata/energia totale consumata (valore %) "Efficienza di utilizzo energetico": energia totale consumata/rifiuti trattati (tep/tonn) "Efficienza di recupero energetico": energia autoprodotta da fonti rinnovabili /rifiuto trattato (tep/tonn) "Efficienza di recupero energetico": energia elettrica prodotta/biogas recuperato (kWh/Nm³) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato alle caratteristiche chimico-fisiche del compost e biostabilizzato prodotti, scarichi idrici, emissioni atmosferiche "Rifiuto prodotto su rifiuto in ingresso": sovvallo prodotto/rifiuti trattati (valore % o tonn/tonn) "Biometano recuperato da rifiuto": biometano ceduto/rifiuto trattato nella linea di digestione (Sm³/tonn) "Efficienza della sezione di upgrading": biometano inviato in rete/biometano totale prodotto (Nm³/Nm³)
IMPIANTI RIFIUTI INDUSTRIALI	"Efficienza di utilizzo energetico": consumo energia totale/rifiuto trattato (tep/tonn) "Efficienza di utilizzo di risorsa idrica": consumo acqua/rifiuto trattato (m³/tonn) "Volumi scaricati su Rifiuto trattato": volume acque scaricate/rifiuto trattato (m³/tonn) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici "Rese di abbattimento": (1-concentrazione OUT/concentrazione IN) *100 "Fattore di utilizzo reagenti": consumo reagenti/rifiuto trattato (tonn/tonn) "Rifiuti autoprodotti su Rifiuti trattati": quantità di rifiuti autoprodotti distinti in pericolosi e non/rifiuti in ingresso (tonn/tonn)

¹ Direttiva relativa alle emissioni industriali (prevenzione e riduzione integrate dell'inquinamento).

"Efficienza di utilizzo energetico": consumo energia totale/rifiuto trattato (tep/tonn)

"Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche

"Percentuale di Recupero-Smaltimento": quantità di rifiuto inviato a recupero-smaltimento/quantità di rifiuto in ingresso all'impianto (valore %)

"Rifiuto prodotto su Rifiuto trattato": sovvallo smaltito/rifiuti trattati (valore % o tonn/tonn)

8 LA COMUNICAZIONE

SELEZIONE E

RECUPERO

La comunicazione esterna in ambito sociale ed ambientale rappresenta uno strumento di trasparenza per la diffusione dei principi della sostenibilità ambientale ed un mezzo importante per il raggiungimento di specifici obiettivi strategici dell'azienda. Il Gruppo promuove, direttamente o tramite sponsorizzazioni, eventi di formazione e di educazione ambientale nelle scuole, incontri con il pubblico e le circoscrizioni per assicurare una chiara e costante comunicazione e per mantenere un dialogo con i clienti, volto ad aumentare il livello di conoscenza verso le attività dell'azienda.

Uno dei principali strumenti di comunicazione verso l'esterno, adottato annualmente dal Gruppo, è costituito dal **Bilancio di sostenibilità**, che rappresenta il documento di dialogo con i portatori di interesse e con il territorio di tutta l'organizzazione, recante le informazioni inerenti alle attività economiche, ambientali e sociali.

Rappresentano, inoltre, strumenti fondamentali di comunicazione verso l'esterno le **Dichiarazioni Ambientali di Herambiente**, relative ai complessi impiantistici ad oggi registrati. Tali documenti vengono pubblicati in versione informatica sul sito del Gruppo (www.herambiente.it).

Herambiente promuove iniziative di comunicazione ambientale, convegni ed incontri formativi soprattutto legati a diffondere le corrette modalità di gestione dei rifiuti.

Con particolare riferimento alla **comunicazione ambientale interna**, Herambiente si impegna a promuovere, tra i dipendenti di ogni livello, un'adeguata conoscenza dei sistemi di gestione e degli aspetti ambientali e di sicurezza, attraverso iniziative di formazione e addestramento.

IMPIANTI APERTI

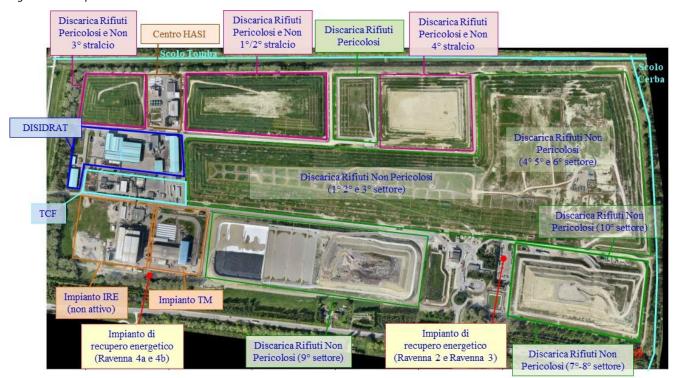
Il Gruppo Herambiente, da sempre attento alle tematiche ambientali e alla diffusione di una mentalità ecologicamente responsabile, offre la possibilità di effettuare visite guidate presso i propri impianti, prenotabili direttamente dal sito web, per fornire una visione completa e trasparente del processo di trattamento dei rifiuti. Con l'obiettivo di aumentare la conoscenza dei cittadini sul funzionamento degli impianti, i visitatori sono guidati attraverso appositi percorsi realizzati dal Gruppo Hera all'interno degli impianti alla scoperta del viaggio di trasformazione del rifiuto. Nel corso del 2023 si è registrato un numero complessivo di 181 giornate di visite agli impianti del Gruppo Herambiente (termovalorizzatori, compostaggi e digestori, selezione e recupero, discariche, impianti rifiuti industriali) per un totale di 4.131 visitatori.

Nell'ottica di stimolare un maggior interesse nelle nuove generazioni sono state attivate anche le **visite "virtuali"** con le scuole. Gli studenti, direttamente dai loro banchi di scuola, hanno potuto seguire un educatore ambientale che ha illustrato le diverse fasi di funzionamento dell'impianto.

Per completare il percorso di divulgazione e trasparenza è presente sul sito Herambiente (<u>www.herambiente.it</u>) una sezione interamente dedicata all'intero parco impiantistico, completa di descrizioni e schede tecniche dettagliate relative agli impianti.

9 IL COMPLESSO IMPIANTISTICO

Gli impianti che rientrano nel campo di applicazione della presente Dichiarazione Ambientale sono i seguenti:


- impianto di trattamento chimico-fisico (TCF);
- impianto di disidratazione fanghi (DISIDRAT);
- impianti di produzione di energia elettrica da biogas prodotto dalla discarica per rifiuti non pericolosi;
- discarica per rifiuti non pericolosi, i cui conferimenti sono terminati nel 2021;
- discarica per rifiuti pericolosi, in fase di gestione post-operativa;
- discariche per rifiuti pericolosi e non pericolosi 1°/2°, 3°, 4° stralcio, in fase di gestione post-operativa;
- Impianto di trattamento meccanico (Impianto TM), attivo dal 2020 fino al 30/06/2021 a seguito di interventi di adeguamento dell'impianto di produzione di Combustibile Solido Secondario (CSS). Era inoltre presente l'Impianto di termovalorizzazione di CSS (IRE), funzionalmente e tecnicamente connesso all'impianto di produzione CSS, posto fuori esercizio il 24/12/2019 a far data dalla quale sono cessati i conferimenti dei rifiuti. L'impianto TM è stato temporaneamente riattivato dalla fine di maggio a novembre 2023, a seguito dell'emergenza alluvione che ha interessato l'Emilia-Romagna nel mese di maggio 2023.

Presso il sito è inoltre presente il Centro di stoccaggio e pretrattamento rifiuti urbani e speciali anche pericolosi, non ricompreso nella presente Dichiarazione Ambientale, in quanto gestito da Herambiente Servizi Industriali S.r.l. e registrato EMAS (n. IT-000858).

L'ubicazione degli impianti nel comparto in oggetto è illustrata in Figura 1.

Per questione di sintesi e chiarezza espositiva la Dichiarazione Ambientale sarà organizzata per aggregazioni basate su cicli produttivi comuni.

Figura 1 Sito impiantistico

9.1 CENNI STORICI

- 1989: realizzazione del Comparto su un terreno precedentemente destinato ad uso agricolo. L'evoluzione impiantistica all'interno dell'area è stata programmata e si è sviluppata per raggiungere l'obiettivo di una gestione integrata di tutte le tipologie di rifiuti nel pieno rispetto dei parametri ambientali.
- 1990: avvio dei lavori per la realizzazione della discarica per i rifiuti non pericolosi.
- 1992: avvio dei lavori per la realizzazione della discarica per rifiuti pericolosi.
- → 1993: avvio dell'attività di smaltimento della discarica 1°/2° stralcio per rifiuti pericolosi e non.
 - 1996: la gestione del Comparto, iniziata con l'azienda AMA Ravenna, confluisce in AREA Ravenna, azienda multiservizi nata dalla fusione della precedente AMA (settore ambientale) con AMGA (settore energetico e delle acque), eccetto la gestione delle discariche per rifiuti pericolosi e non in capo a Sotris S.p.A.
 - 1997: nel mese di marzo sono iniziati i lavori per la costruzione dell'impianto chimico-fisico (TCF).
 - → 1998: nel mese di luglio è stato autorizzato, in via provvisoria, l'impianto chimico-fisico (TCF). Sono iniziati i lavori di realizzazione di una nuova discarica per rifiuti pericolosi denominata 3° stralcio. La Provincia di Ravenna ha approvato il progetto definitivo di realizzazione del termovalorizzatore adiacente all'impianto di produzione di CSS e sono iniziati i lavori di realizzazione.
- 1999: nel mese di agosto è stato autorizzato, in via definitiva, l'impianto chimico-fisico (TCF). Nello stesso anno è avvenuta l'entrata a regime dell'impianto di produzione di CSS (prima CDR), realizzato con finanziamento pubblico negli anni '90. Il termovalorizzatore è stato dotato di autorizzazione provvisoria per l'iter di collaudo.
- 2000: nei primi mesi dell'anno sono terminati i lavori di costruzione del termovalorizzatore. Nello stesso anno è entrata in esercizio la discarica per rifiuti pericolosi denominata 3° stralcio.
- **→** *2001*: il 31 gennaio è entrato a regime il **termovalorizzatore**.
- → 2002: Sotris S.p.A. diventa una società controllata da Hera S.p.A Divisione Ambiente alla quale, dal primo novembre dello stesso anno, passa la gestione degli impianti prima in capo ad AMA Ravenna.
- 2006: avvio delle attività per la realizzazione della discarica per rifiuti pericolosi 4° stralcio in considerazione dell'imminente esaurimento delle discariche per rifiuti pericolosi presenti nel sito.
- 2008: nel mese di gennaio diventa operativa la discarica per rifiuti pericolosi 4° stralcio. Per la discarica per rifiuti pericolosi è stata avviata la procedura di chiusura (ex art. 12 del D.Lgs. 36/03) per il raggiungimento delle volumetrie disponibili. Dal 1° aprile 2008 fino alla costituzione di Herambiente, viene trasferita la proprietà e la gestione dell'impianto di trattamento chimico-fisico da Hera S.p.A. a Ecologia Ambiente S.r.I., oggi compresa in Herambiente.
- → 1° luglio 2009: HERA S.p.A. Divisione Ambiente confluisce in Herambiente S.r.l che diventa Herambiente S.p.A. nell'ottobre 2010.
- 2010: avvio dei lavori per la realizzazione del nuovo impianto DISIDRAT, per cui ne era prevista la delocalizzazione, insieme all'impianto CTIDA, dal comparto sito al Km 3,8 della S.S. Romea al comparto in oggetto.
- 2012: terminano gli interventi previsti per la delocalizzazione dell'impianto DISIDRAT e CTIDA, pertanto, tali impianti non sono più in esercizio nel comparto sito al Km 3,8. L'impianto CTIDA è stato dismesso e sostituito da una nuova linea di pretrattamento chimico-fisico con Adsorbimento (TCFA) installata all'interno dell'esistente impianto TCF, a sua volta interessato da modifiche impiantistiche, mentre il "vecchio" Disidrat è stato smantellato e sostituito dal nuovo, realizzato all'interno del comparto e funzionalmente connesso all'impianto TCF. Il nuovo impianto DISIDRAT è entrato in esercizio il 4 giugno, ed a regime il 30 agosto; mentre il chimico-fisico (TCF) nella nuova configurazione impiantistica è stato avviato in data 11 dicembre.
- 2014: in data 10 settembre Herambiente S.p.A. diventa Socio Unico di Sotris S.p.A. che a far data dal 01/01/2015 è stata fusa per incorporazione in Herambiente.

9.2 CONTESTO TERRITORIALE

Il polo integrato di trattamento rifiuti è collocato a Ravenna, al km 2,6 della Strada Statale Romea, e insiste su un'area pressoché rettangolare con un'estensione di circa 110 ettari confinante a Est con la S.S. 309 Romea, a Sud con la strada comunale via Guiccioli, a Nord con lo scolo Cerba e ad Ovest con lo scolo Tomba.

Figura 2 Inquadramento territoriale del sito impiantistico

Complesso impiantistico

Clima ed atmosfera

Il Comparto ricade in zona di pianura costiera ad un'altitudine di pochi metri s.l.d.m., influenzata dalla presenza del mare i cui venti umidi e le correnti di brezza riescono a penetrare in profondità nella pianura ma, date le caratteristiche del mare Adriatico, poco profondo e di conformazione stretta, il clima marino presenta caratteristiche decisamente attenuate. Durante l'inverno è frequente l'afflusso di aria fredda continentale per l'azione esercitata dall'anticiclone est-europeo che favorisce condizioni di tempo stabile con cielo in prevalenza sereno, frequenti gelate notturne e formazioni nebbiose. In autunno e in primavera, si assiste alla presenza di masse d'aria di origine mediterranea provenienti originariamente da Est e si verificano condizioni di tempo perturbato con precipitazioni irregolari. Durante l'estate il territorio provinciale è interessato da flussi occidentali di provenienza atlantica associati all'anticiclone delle Azzorre; in questo periodo, in coincidenza con tempo stabile, scarsa ventilazione, intenso riscaldamento pomeridiano, si producono formazioni nuvolose che spesso danno luogo ad intensi e locali fenomeni temporaleschi.

La qualità dell'aria è costantemente monitorata da ARPAE Sezione Provinciale di Ravenna attraverso una rete di rilevamento che comprende ad oggi cinque stazioni fisse e due laboratori mobili. Tale rete è integrata con ulteriori due stazioni di monitoraggio locali per il controllo e la verifica degli impatti prevalentemente riconducibili all'area industriale/portuale.

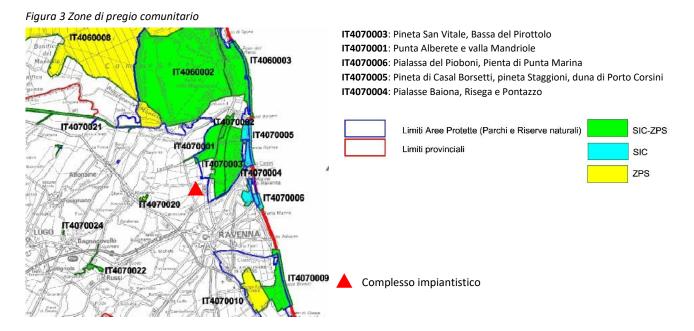
Idrografia e idrogeologia

L'area di interesse è situata nel bacino idrografico del Canale Candiano, formato da diversi canali di bonifica tra cui il Cerba ed il Tomba. Il Canale Candiano, che rappresenta l'asse principale del Porto di Ravenna, prima dello sbocco in mare è costituito da alvei di acqua salata o salmastra, quali la Pialassa Baiona e la Pialassa Piombone. Dal punto di vista idraulico, per la quasi totalità della sua estensione il sito è compreso nel bacino di drenaggio del canale Cerba che defluisce, mediante impianto di sollevamento, nella Pialassa Baiona, un tipico ambiente di transizione tra acque salate e acque dolci la cui qualità viene costantemente monitorata da ARPAE – Sezione Provinciale di Ravenna attraverso una rete di stazioni di monitoraggio. Lo scolo Tomba, invece, parte in corrispondenza della località Tre Ponti e scorre per circa 350 m parallelamente alla S.S. 309 Romea, attraversa poi in direzione Nord-Sud il sito segnando il confine Ovest del Comparto km 2,6 e si immette nello scolo Cerba. Il reticolo idrografico nell'intorno del sito impiantistico è di origine completamente antropica conseguente all'opera di bonifica eseguita su zone originariamente paludose. Grazie alla presenza di alcuni collettori principali, di una moltitudine di canali secondari e di una rete di fossi di scolo, questo complesso sistema

idraulico assicura un buon drenaggio dell'area interessata e, in alcuni momenti dell'anno, funge da alimentazione per il comparto agricolo.

Gli acquiferi presenti nel sottosuolo della pianura emiliano romagnola sono di due tipi. A sud vi sono le ghiaie che i fiumi appenninici depositano ed hanno depositato appena usciti dalle valli, allo sbocco in pianura. A nord (nella zona ferrarese e ravennate) vi sono le sabbie che il Po ha sedimentato lungo il suo percorso e nel suo apparato deltizio.

Per monitorare qualitativamente e quantitativamente i corpi idrici sotterranei della Provincia esiste una rete regionale di piezometri, anch'essa gestita da ARPAE – Sezione Provinciale di Ravenna, la quale tuttavia si concentra sulle acque profonde. Le determinazioni svolte negli anni hanno rilevato concentrazioni elevate di ammonio, ferro e manganese riferibili, comunque, alla natura geologica dei sedimenti e quindi di origine naturale.


Suolo e sottosuolo

Localmente l'area del Comparto è costituita prevalentemente da sabbie e argille di origine fluviale o lagunare variamente distribuite. Sabbie di elaborazione litorale si estendono dalla adiacente Pineta di San Vitale, posta ad Est del sito, sino al limite della zona interessata dagli impianti.

In generale le litologie presenti sono caratterizzate da sabbie, sabbie medio-fini, limi, argille di origine fluvio-palustre e marino-deltizia litorale. Le indagini geognostiche svolte sull'area del comparto hanno permesso di ricostruire l'andamento dei terreni nel sottosuolo, con valutazione complessiva di un substrato a permeabilità media.

Aspetti naturalistici

Il Comparto, localizzato in zona di recente bonifica, si colloca al margine fra una matrice agricola ed una naturale, in prossimità di aree protette e di aree di particolare pregio ambientale denominate Siti di importanza comunitaria (SIC, designate ai sensi della "Direttiva habitat" n. 92/43/CEE), a cui si aggiungono le Zone di Protezione Speciale (ZPS, previste dalla "Direttiva Uccelli" n. 79/409/CEE). Inoltre, sul lato nord dello scolo Cerba, il comparto confina con il limite del Parco Regionale del Delta del Po, mentre a Nord e ad Est, ad una distanza di circa 30 metri dalla S.S Romea e dallo scolo Cerba, confina con il limite di Piano Territoriale di Stazione (Parco del Delta), in particolare con la Stazione Pineta San Vitale e Piallasse del Parco del Delta del Po. Al fine di non frammentare da una parte la matrice agricola, caratterizzata da un andamento pianeggiante, e non intaccare dall'altra il patrimonio naturale è stata realizzata una fascia boschiva perimetrale all'area del comparto.

9.3 QUADRO AUTORIZZATIVO

Gli impianti ubicati nel Comparto sono gestiti nel rispetto delle relative Autorizzazioni Integrate Ambientali, di seguito indicate, nonché della normativa ambientale applicabile di cui si riporta una sintesi in Allegato 1.

Tabella 1 Elenco delle autorizzazioni in essere

SETTORE INTERESSATO	AUTORITÀ CHE HA RILASCIATO L'AUTORIZZAZIONE	NUMERO e DATA DI EMISSIONE	AUTORIZZAZIONE
Aria-Acqua- Rifiuti- Suolo	Provincia di Ravenna	Provv. N. 2860 del 29/08/2012 e s.m.i. ²	Autorizzazione Integrata Ambientale per l'impianto di recupero energetico da CSS (ex CDR) e connesso impianto di produzione CSS
Aria-Acqua- Rifiuti-Suolo	Provincia di Ravenna	Provv. N. 1656 del 16/05/2012 e s.m.i.	Autorizzazione Integrata Ambientale per l'impianto chimico-fisico e per l'impianto Disidrat
Aria-Acqua- Rifiuti-Suolo	ARPAE SAC di Ravenna	DET-AMB-2018-4122 del 10/08/2018 e s.m.i.	Autorizzazione Integrata Ambientale per la discarica per rifiuti non pericolosi e connessa attività di recupero energetico del biogas di discarica
Aria-Acqua- Rifiuti- Suolo	Provincia di Ravenna	Provv. N. 565 del 15/12/2009 e s.m.i.	Autorizzazione Integrata Ambientale per la discarica per rifiuti pericolosi
Aria-Acqua- Rifiuti- Suolo	Provincia di Ravenna	Provv. N. 361 del 24/08/2009 e s.m.i. (volturato con Provv. n. 3931 del 31/12/2014)	Autorizzazione Integrata Ambientale per le discariche per rifiuti pericolosi e non pericolosi 1°/2° stralcio, 3° stralcio e 4° stralcio
Energia	Provincia di Ravenna	DET-AMB-2016-1664 del 31/05/2016 e s.m.i. Provv. N. 902 del 15/03/2011 e N. 78 del 10/01/2012 e successive volture con DET- AMB-2018-3846 e s.m.i. e DET- AMB-2018-3847 del 25/07/2018 e s.m.i.	Autorizzazione Unica ai sensi del D.Lgs. 387/03 relativa agli impianti di produzione di energia elettrica da biogas di discarica

A maggior tutela dei cittadini e dell'ambiente, la gestione del sito assicura che in caso di incidente ambientale sia garantito il ripristino dello stato dei luoghi mediante versamento di garanzie finanziarie a favore della Pubblica Amministrazione.

Nel triennio di riferimento non si segnalano provvedimenti in ambito ambientale emessi da parte di Autorità Competenti o Organi di controllo nei confronti del sito oggetto di registrazione EMAS.

9.4 PROGETTI IN CORSO

Di seguito si descrivono sommariamente i nuovi interventi e le principali opere realizzate nel periodo di riferimento della dichiarazione ambientale e quelle ancora in corso d'attuazione, di cui alcune identificate anche nel programma ambientale riportato al paragrafo 14.

Nel dettaglio, nel corso del triennio sono state realizzate le seguenti opere:

² La validità dell'AlA vigente è stata prorogata dall'Autorità Competente con successive comunicazioni, gli ultimi atti di proroga sono la DET-AMB-2019-47 del 08/01/2019 e la DET-AMB-2019-3132 del 01/07/2019 nella quale, sulla base delle previsioni pianificatorie del Piano Regionale di Gestione dei Rifiuti (PRGR), l'AlA dell'impianto è da intendersi prorogata sino al 31/12/2019. Segue la DET-AMB-2019-6054 del 31/12/2019 e s.m.i. – Aggiornamento AlA per adeguamento condizioni di esercizio Anno 2020 secondo DGR n. 1062/2019.

- realizzazione del collettore del biogas tra le esistenti centrali di aspirazione dei motori di recupero energetico Ravenna 3 e Ravenna 4a/4b al fine di convogliare le eventuali quote di biogas captato in esubero prodotto dai settori 5°-6°-7°, 8° e 10° della discarica ai motori di Ravenna 4a e 4b, per evitarne la termodistruzione in torcia, in condizioni sia di normale funzionamento, sia di indisponibilità della sezione impiantistica di recupero energetico Ravenna 3, raggiungendo in tal modo l'obiettivo definito (si veda § 14);
- ultimazione, a ottobre 2021³, della copertura definitiva della discarica 4° stralcio per rifiuti pericolosi e non e, a dicembre 2021⁴, della copertura definitiva sommitale dei settori 1°-2°-3° della discarica per rifiuti non pericolosi;
- conclusione, nel giugno 2022, dei lavori per la realizzazione⁵ della Vasca VA1 per la raccolta delle acque meteoriche di dilavamento provenienti dalle discariche 1°/2° e 4° stralcio, intervento previsto nell'ambito del progetto di realizzazione⁶ del sistema di gestione delle acque meteoriche di dilavamento delle discariche per rifiuti pericolosi, raggiungendo in tal modo l'obiettivo definito (si veda § 14):
- realizzazione della copertura definitiva del 9° settore della discarica per rifiuti non pericolosi avviata nel corso del 2022⁷ e terminata nel mese di febbraio 2023⁸.

Si identifica anche il seguente intervento che risulta ancora in corso:

nell'ambito della domanda di Riesame di AIA per l'impianto chimico-fisico e per l'impianto Disidrat, presentata nel febbraio 2020⁹, in concomitanza all'aggiornamento delle nuove linee guida (BATC¹⁰) è stata proposta, quale intervento di miglioramento e ottimizzazione impiantistica, la sostituzione del sistema di abbattimento a zeolite delle emissioni atmosferiche a servizio del punto emissione convogliata E1 dell'impianto TCF con un nuovo sistema costituito da scrubber ad umido a doppio stadio seguito da filtro a carboni attivi.

Relativamente all'attivazione¹¹ della Procedura per il rilascio del Provvedimento Autorizzatorio Unico Regionale (PAUR) relativa al progetto di realizzazione di un nuovo lotto (5° stralcio) in ampliamento alle discariche esistenti per rifiuti pericolosi e non pericolosi (1°/2°, 3°, 4° stralcio), da prevedere nell'area su cui attualmente insiste l'impianto di recupero energetico (IRE) ed il connesso impianto di produzione CSS prevedendone la demolizione, Herambiente ha trasmesso¹² nel mese di aprile 2024 richiesta di archiviazione.

³ Comunicazione HA Prot. 18270 del 23/11/2021.

⁴ Comunicazione HA Prot. 524 del 13/01/2022.

⁵ Comunicazione di fine lavori HA Prot. 8606/22 del 01/07/2022.

⁶ Comunicazione HA Prot. 16150 del 15/09/2016.

⁷ Comunicazione HA Prot. 3200/22 del 04/03/2022.

⁸ Comunicazione HA Prot. 3845/23 del 16/03/2023.

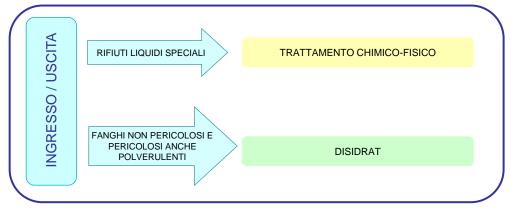
⁹ Comunicazione HA Prot. 3036 del 17/02/2020.

¹⁰ Con Decisione di Esecuzione della Commissione UE n. 2018/1147 del 10 agosto 2018 sono state approvate, ai sensi della Direttiva 2010/75/UE del Parlamento europeo e del Consiglio, le conclusioni sulle migliori tecniche disponibili per il trattamento dei rifiuti.

¹¹ Comunicazione HA Prot. 10654 del 18/06/2020.

¹² Comunicazione HA Prot. 5340/24 del 22/04/2024.

10 IL CICLO PRODUTTIVO


Relativamente alla discarica per rifiuti non pericolosi la descrizione che segue riguarda l'attività in condizioni a regime sebbene i conferimenti siano terminati il 1° settembre 2021.

10.1 RIFIUTI IN INGRESSO AL COMPARTO

Presso il sito impiantistico oggetto della presente Dichiarazione ambientale risultano, ad oggi, attivi l'Impianto di trattamento chimico-fisico (TCF), di rifiuti speciali liquidi pericolosi e non pericolosi, e l'impianto di disidratazione fanghi (DISIDRAT). Gli impianti svolgono un servizio a favore del mondo produttivo e di altre realtà impiantistiche del Gruppo: la prevalenza degli ingressi riguarda i rifiuti di provenienza produttiva come i fanghi da depurazione ed i percolati prodotti nelle discariche interne ed esterne al Gruppo. Il dettaglio dei rifiuti trattati per tipologia di impianto è riportato nei paragrafi successivi.

I rifiuti in ingresso al sito (Figura 4), dopo aver transitato attraverso le strutture gestite dal Servizio Accettazione, si dirigono verso gli impianti di destinazione lungo percorsi segnalati e nel rispetto delle norme comportamentali di sicurezza generale. I mezzi, successivamente allo scarico nell'impianto di destinazione, ritornano nella zona di accettazione per la rilevazione della tara, a completamento delle operazioni di pesatura.

Figura 4 Flussi in ingresso

10.2 IMPIANTO TM

L'Impianto di Trattamento Meccanico (TM) ha assunto la sua denominazione con Determina di aggiornamento AIA n° 6054 del 31/12/2019¹³ a seguito di variazioni impiantistiche sull'impianto di produzione CSS, attivo fino a fine 2019. L'impianto ha previsto l'utilizzo della sola prima sezione che operava la separazione secco/umido del rifiuto indifferenziato mediante triturazione, vagliatura con vaglio a tamburo rotante (Figura 5) e deferrizzazione, senza alcuna variazione alla sezione di ricevimento rifiuti in fossa (Figura 6) e relativo sistema di alimentazione delle tre linee. In condizioni ordinarie era previsto il funzionamento in parallelo di solo due delle linee di produzione mantenendo una delle tre linee con funzioni di riserva alle altre due. Successivamente con determina DET-AMB-2020-5935 del 04/12/2020 è stato prorogato sino al 30/06/2021 il conferimento di rifiuti urbani all'impianto TM nel rispetto dei flussi disposti per il 1° semestre 2021 nello scenario di gestione riportato dalla DGR n. 1635/2020. L'Impianto TM nella suddetta configurazione non è più attivo dal 1° luglio 2021.

¹³ DET-AMB-2019-6054 del 31/12/2019 - Aggiornamento AIA per adeguamento condizioni di esercizio anno 2020 secondo DGR n. 1062/2019.

Figura 5 Vista interna del vaglio

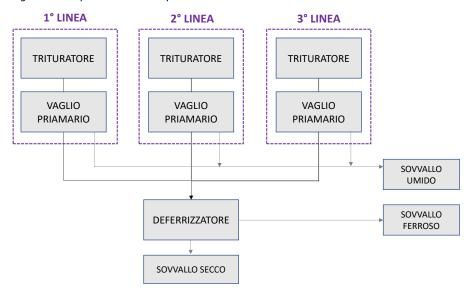


Figura 6 Fossa rifiuti

Si riporta di seguito lo schema delle fasi produttive dell'Impianto TM nella sua configurazione al 1° luglio 2021 rimandando al successivo paragrafo per il dettaglio sui rifiuti in ingresso.

Figura 7 Ciclo produttivo dell'impianto TM

Successivamente, a seguito degli eccezionali eventi meteorologici di maggio 2023 e delle varie ordinanze emanate dalla Regione Emilia-Romagna per affrontare la gestione dei rifiuti durante l'emergenza, Herambiente ha comunicato¹⁴, con riferimento al D.P.G.R. n. 66 del 18/05/2023¹⁵, l'attivazione di centri di stoccaggio per la gestione dei rifiuti urbani derivanti dalla gestione dell'emergenza individuando l'impianto TM in oggetto tra i "siti attualmente non autorizzati ma con caratteristiche idonee" (punto 9 D.P.G.R. 66/2023).

L'impianto TM è stato, pertanto, temporaneamente riattivato dalla fine di maggio a novembre 2023. I rifiuti sono stati conferiti nella fossa di ricezione e stoccaggio dell'impianto, movimentati con carroponte e sottoposti a triturazione nella Linea 3 per il successivo invio ad idonei impianti di trattamento. Il termine dell'attività per l'emergenza e il ripristino dell'impianto alle condizioni dell'AIA è stato notificato agli Enti di controllo¹⁶.

¹⁴ Comunicazione HA Prot. n. 6912 del 23/05/2023.

¹⁵ Decreto del Presidente della Giunta Regione Emilia-Romagna n. 66 del 18/05/2023 "Disposizioni in merito allo smaltimento dei rifiuti".

¹⁶ Comunicazione Herambiente prot. n. 2668 del 23/02/2024.

10.2.1 Rifiuti trattati

L'impianto TM era autorizzato a trattare un quantitativo massimo di rifiuti urbani pari a 60.000 tonnellate/anno limitandosi esclusivamente a due tipologie di rifiuti, quali i residui della pulizia stradale (EER 200303) e i rifiuti urbani non differenziati (EER 200301), e, nel rispetto delle previsioni pianificatorie del Piano Regionale di Gestione dei Rifiuti (DGR n. 1635/2020), ha trattato i rifiuti in ingresso fino al 30 giugno 2021. Nella seguente tabella si riporta, per il triennio di riferimento, sia il quantitativo in ingresso all'impianto TM per il solo anno 2021 che il quantitativo di rifiuti urbani derivanti dalla gestione dell'emergenza, entrati all'impianto temporaneamente riattivato dalla fine di maggio a novembre 2023.

Tabella 2 Rifiuti in ingresso - Impianto TM

Rifiuti in ingresso	U.M.	2021	2022	2023
Rifiuti Urbani	tonn	26.039	0	5.153

FONTE: ESTRAZIONE DA SOFTWARE DI GESTIONE RIFIUTI

10.3 DISCARICHE PER RIFIUTI NON PERICOLOSI E PERICOLOSI

Figura 8 Vista discariche Comparto da Est

Nel Comparto sono presenti i seguenti impianti di discarica:

- **Discarica per rifiuti non pericolosi** costituita dai seguenti settori:
 - 1°, 2°, 3° settore, esauriti nel dicembre 2005, con copertura definitiva sulle scarpate laterali e sulla sommità, quest'ultima realizzata nel corso del 2021, e 4° settore con copertura definitiva in gestione post-operativa dal 25/11/2015;
 - o 5° e 6° settore con copertura definitiva realizzata nel corso del 2018 e in gestione post-operativa¹⁷;
 - 7° e 8° settore, in parte interessati dalla coltivazione del nuovo 10° settore, con copertura definitiva realizzata nel corso del 2020 sulle porzioni esaurite non interferenti con il 10° settore;
 - 9° settore articolato in due sottosettori per un volume utile ad assestamenti avvenuti pari a 691.000 m³, per il quale la coltivazione è iniziata ad agosto 2016 e terminata il 31 luglio 2019. Il settore è dotato di copertura definitiva terminata nel febbraio 2023¹8 e successivamente è stata presentata domanda di modifica non sostanziale¹9 ai fini del rilascio del provvedimento di chiusura definitiva di cui all'art.12 del D.Lgs. 26/03 e s.m.i.;

¹⁷ DET-AMB-2019-4053 del 03/09/2019 – Aggiornamento AIA per Modifica Non Sostanziale.

¹⁸ Comunicazione Herambiente Prot. 3845/23 del 16/03/2023.

¹⁹ Comunicazione Herambiente Prot. 8131/23 del 19/06/2023.

- o 10° settore per il quale la coltivazione è iniziata ad agosto 1° agosto 2019 e terminata il 1° settembre 2021²⁰ e ha previsto il conferimento di 224.581 tonnellate (rifiuti a smaltimento). Il settore è dotato di copertura provvisoria la cui realizzazione è terminata nel mese di dicembre 2021²¹.
- **Discarica per rifiuti pericolosi**, entrata in esercizio nel 1994, con una volumetria utile disponibile autorizzata pari a 50.000 m³ ed esaurita nel 2008.

L'impianto è stato ufficialmente chiuso il 19/11/2015, data in cui si è dato formalmente avvio alla fase di gestione post-operativa²².

Discarica 1°/2° stralcio per rifiuti pericolosi e non, costituita da cinque lotti con capacità complessiva di circa 530.000 m³, che ha esaurito la propria volumetria disponibile nel corso del 2010, a meno dei primi cedimenti legati all'assestamento rifiuti. Con la fine del periodo di sperimentazione dell'impianto di trattamento fanghi da depuratori civili, posto sulla sommità della discarica e smantellato nel 2013, si rese disponibile una volumetria residua in virtù degli assestamenti

avvenuti e si ripresero i conferimenti da novembre 2014 a febbraio 2016. Nel luglio 2016 sono terminati i lavori di copertura definitiva ed è stata attivata successivamente la procedura di chiusura ex art. 12 del D. Lgs. 36/2003 e s.m.i. Nel corso del 2022 è stata autorizzata la chiusura definitiva e l'inizio della gestione post-operativa²³.

- Discarica 3° stralcio per rifiuti pericolosi e non, entrata in esercizio nel 2000 e costituita da quattro lotti con capacità complessiva di circa 160.000 m³, esaurita da gennaio 2008. Con Provvedimento n. 361 del 24/08/09 la Provincia di Ravenna ha autorizzato la chiusura definitiva della discarica e l'attività di gestione post-operativa è iniziata in data 29/03/2011²³.
- Discarica 4° stralcio per rifiuti pericolosi, entrata in esercizio nel 2008, è costituita da

Figura 10 Discarica 3° stralcio

due distinti settori confinati, comprendenti ognuno 3 vasche, per una capacità complessiva di circa 420.000 m³, gestiti in modo specifico e di fatto come due discariche separate. I due settori dedicati rispettivamente ai rifiuti pericolosi e non pericolosi sono separati mediante un'adeguata barriera di confinamento artificiale e/o naturale progettata in modo tale da separare i percolati prodotti. I conferimenti sono terminati a novembre 2016 ed in data 19/12/2016 sono stati ultimati i lavori di messa in sicurezza. Nel corso del 2020 sono stati avviati i lavori per la realizzazione della copertura definitiva che si sono conclusi a ottobre 2021²⁴, a seguire è stata attivata la procedura di chiusura ex art. 12 del D. Lgs. 36/2003 e s.m.i. Nel corso del 2022 è stata autorizzata la chiusura definitiva e l'inizio della gestione post-operativa²⁵.

10.3.1 Rifiuti in ingresso

Nel triennio di riferimento è risultata attiva unicamente la discarica per rifiuti non pericolosi interessata dalla coltivazione del 10° settore. Con modifica non sostanziale di AIA del 21/05/2021 (DET-AMB-2021-2547) è stata

²⁰ Comunicazione Herambiente Prot. 14385 del 09/09/2021.

²¹ Comunicazione Herambiente Prot. 20257 del 29/12/2021.

²² DET-AMB-2019-339 del 25/01/2019 – Aggiornamento AIA per Modifica Non Sostanziale.

²³ DET-AMB-2022-1933 del 14/04/2022 – Aggiornamento AIA per Modifica Non Sostanziale.

²⁴ Comunicazione Herambiente Prot. n. 18270 del 23/11/2021.

autorizzata l'ottimizzazione nella gestione del volume utile autorizzato del 10° settore della discarica consentendo il conferimento di ulteriori 18.000 tonnellate di rifiuti senza alcuna modifica della volumetria, delle quote e dei profili già autorizzati. I conferimenti al 10° settore sono terminati il 1° settembre 2021 per esaurimento delle quantità autorizzate²⁵.

Nella discarica per rifiuti non pericolosi i rifiuti speciali in ingresso provenivano da impianti di selezione e/o trattamento del Gruppo Hera come i sovvalli e i fanghi biologici stabilizzati e rifiuti provenienti da produttori primari. Per le operazioni di copertura dei rifiuti abbancati si utilizzavano i rifiuti recuperabili come la frazione organica stabilizzata (FOS) proveniente da impianti esterni del Gruppo.

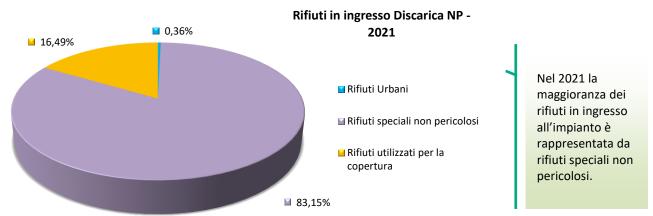

In Tabella 3 è riportato il riepilogo dei rifiuti in ingresso alla discarica nel 2021, tra i quantitativi di rifiuti recuperabili compaiono anche quelli utilizzati per la regolarizzazione delle superfici e la messa in sicurezza dei settori esauriti, realizzata con FOS (biostabilizzato) e terreno.

Tabella 3 Riepilogo ingressi - Discarica per rifiuti non pericolosi

Rifiuti in ingresso	U.M.	2021
Rifiuti urbani	tonn	206
Rifiuti speciali	tonn	47.092
Totale smaltito	tonn	47.298
Rifiuti recuperati nelle operazioni di copertura	tonn	9.339
Totale ingressi	tonn	56.637

FONTE: ESTRAZIONI DA SOFTWARE GESTIONE RIFIUTI

Figura 11 Composizione percentuale dei rifiuti in ingresso (2021)

10.3.2 Coltivazione

L'attività di coltivazione ha lo scopo di garantire la messa a dimora dei rifiuti, tale da rendere minimo l'impatto nei confronti dell'ambiente circostante. A scarico avvenuto, il rifiuto viene spinto verso la zona di abbancamento e sottoposto alle operazioni di compattazione al fine di massimizzare la densità del rifiuto depositato. L'operazione assicura un'elevata stabilità del corpo di discarica e minimizza la produzione di percolato, la penetrazione di insetti e roditori nel corpo di accumulo e l'ingresso di aria evitando il pericolo di incendio.

Nel caso della coltivazione della discarica per rifiuti non pericolosi (10° settore), giornalmente, al termine dei

28

²⁵ PG HA 14385 del 09/09/2021.

conferimenti, si effettuava l'operazione di copertura del rifiuto con lo scopo di contenere le emissioni odorigene, limitare il richiamo di animali indesiderati, soprattutto volatili, e ridurre l'esposizione dei rifiuti agli eventi meteorologici. Le modalità ed i materiali previsti per tale operazione si differenziavano in funzione della pendenza dell'area coinvolta. Potevano, infatti, essere utilizzati: sabbia, ghiaia, pietrisco o macerie, teli in polietilene autoestinguente, materiali inerti di recupero, FOS (Frazione Organica Stabilizzata).

10.3.3 Chiusura provvisoria

Nella discarica per rifiuti non pericolosi al raggiungimento della quota finale di abbancamento, nell'ambito di ogni singolo settore, si procede alla copertura provvisoria. L'operazione ha lo scopo di effettuare il primo confinamento di porzioni del corpo di discarica e al tempo stesso funge da strato di regolarizzazione²⁶ per la successiva chiusura definitiva.

Per il 10° settore tale intervento si è realizzato tramite l'apposizione di geocompositi drenanti per la captazione del biogas residuo, geocompositi grimpanti (solo per le superfici inclinate) e uno strato di terreno argilloso vergine sul quale vengono realizzate le opere provvisorie per la raccolta e l'allontanamento delle acque meteoriche.

10.3.4 Copertura finale

Una volta esaurita la volumetria utile complessiva si provvede alla realizzazione degli interventi di chiusura finale, la **copertura definitiva**, che completerà il sistema di chiusura ad assestamenti avvenuti.

Quest'ultima ha lo scopo di isolare definitivamente i rifiuti depositati nel corpo di discarica, permettere la realizzazione delle opere a verde di ripristino ambientale e prevedere la restituzione del sito alla collettività. La copertura è realizzata con modalità differenti a seconda che si tratti della discarica per rifiuti non pericolosi che pericolosi comunque in accordo con quanto previsto dal D.Lgs. 36/2003 e s.m.i.

Ad oggi è stata realizzata la copertura definitiva della discarica per rifiuti pericolosi, delle discariche 1°/2° stralcio, 3° e 4° stralcio e della discarica per rifiuti non pericolosi, relativamente ai settori 1°, 2°, 3°, 4°, 5°, 6° settore, 7° e 8° per le porzioni non interferenti con il 10° settore, e 9° settore.

10.3.5 Captazione e trattamento percolato

Il percolato è un liquido che si genera nelle discariche a seguito di infiltrazione delle acque meteoriche nel corpo dei rifiuti e naturale decomposizione degli stessi. La produzione del percolato è regolata da una complessa relazione tra diversi fattori quali:

- precipitazioni;
- caratteristiche fisiche delle coperture (pendenze, permeabilità, vegetazione ecc.);
- caratteristiche dei rifiuti abbancati (composizione, densità, umidità iniziale ecc.);
- superficie dell'invaso (numero di celle abbancate);
- modalità di compattazione del rifiuto abbancato.

Gli elementi regolatori predominanti sono comunque l'apporto idrico da infiltrazioni di acque di pioggia nel corpo di discarica e la superficie esposta alle precipitazioni.

I corpi di discarica sono dotati di un sistema di drenaggio del percolato che ha lo scopo di drenare e convogliare sul fondo della discarica il percolato, il quale viene successivamente raccolto mediante un sistema di tubazioni fessurate. Il percolato viene quindi portato, mediante un sistema di estrazione, al di fuori della discarica e convogliato in vasche e serbatoi di stoccaggio. Successivamente, tramite condotta, il percolato è avviato prevalentemente a trattamento presso il vicino impianto di Trattamento Chimico-Fisico (TCF).

²⁶ Punto 2.4.3, Allegato 1 del Dlgs 36/03 "Attuazione della Direttiva 1999/31/CE relativa alle discariche di rifiuti".

Figura 12 Parco serbatoi dedicato al 9° settore

Relativamente alla discarica per rifiuti pericolosi, a seguito di una anomalia riscontrata nel piezometro interno N1 (per il dettaglio si vedano i precedenti documenti di Dichiarazione Ambientale), da agosto 2010 non è stata più utilizzata la linea di trasporto del percolato, tombinata completamente con calcestruzzo nel corso del 2011, come approvato dalla Provincia di Ravenna. L'allontanamento del percolato viene tutt'oggi effettuato tramite auto espurgo con aspirazione diretta del percolato dai singoli sottosettori dell'impianto, scarico nell'attuale vasca di stoccaggio del percolato della discarica stessa e successivo invio all'impianto TCF.

10.3.6 Recupero energetico biogas

Nelle discariche per rifiuti pericolosi e non $(1^{\circ}/2^{\circ}, 3^{\circ}, 4^{\circ})$ stralcio e pericolosi), per le caratteristiche dei rifiuti conferiti (assenza di materiali organici putrescibili), si ritiene altamente improbabile la formazione di biogas all'interno dei corpi di discarica, come accertato dalle specifiche campagne di indagine appositamente svolte. Le discariche per rifiuti urbani, invece, producono, per effetto della decomposizione anaerobica (in assenza di ossigeno) della sostanza organica, il biogas: una miscela gassosa costituita prevalentemente da metano (CH₄) e biossido di carbonio (CO₂).

In conseguenza delle sue caratteristiche combustibili, il biogas deve, per ragioni di sicurezza, essere estratto dalla massa di rifiuti stoccati nella discarica ed essere sottoposto ad un processo di combustione, riducendo nel contempo l'impatto sull'ambiente circostante dovuto, ad esempio, alle emissioni maleodoranti. Il biogas prodotto viene aspirato dal corpo discarica mediante una serie di pozzi di captazione (Figura 13) e convogliato, tramite le centrali di aspirazione (Figura 14), ai sistemi di recupero energetico o alle torce dove viene bruciato solo in condizioni di emergenza (fermata dei gruppi di generazione di energia elettrica).

Figura 13 Testa di pozzo

Figura 14 Sottostazioni di regolazione

L'energia prodotta dal sistema di recupero energetico (Figura 15) è immessa da una cabina di trasformazione BT/MT nella rete elettrica nazionale.

Figura 15 Schema del recupero energetico

Ad oggi, il sistema di recupero energetico del biogas presente presso la discarica per rifiuti non pericolosi è costituito da quattro motori endotermici: "Ravenna 2" e "Ravenna 3" aventi una potenza di 836 kWe, "Ravenna 4b" e "Ravenna 4a", entrambi con una potenza elettrica nominale di 625 kWe.

Come autorizzato dal provvedimento di modifica non sostanziale del 24/09/2021 (DET-AMB-2021-4733), è stato realizzato²⁷ a fine 2021 il riassetto dei sistemi di aspirazione e combustione (torce/motori endotermici) del biogas di discarica, mediante l'unificazione di tutte le centrali di aspirazione del biogas per massimizzarne l'invio a recupero energetico, realizzando la connessione tra gli esistenti sistemi di captazione e collettamento del biogas a servizio di 1°-2°-3° settore e 4° settore all'esistente centrale di aspirazione a servizio di 5°-6°-7°-8°-10° settore, raggiungendo in tal modo l'obiettivo definito (si veda § 14). Le stazioni di aspirazione non sono, quindi, più dedicate a singoli settori di discarica ma vengono esercite con l'obiettivo di privilegiare l'invio a recupero energetico dei flussi di biogas, minimizzando il più possibile il ricorso ai combustori adiabatici. Tale intervento ha previsto anche la dismissione di quattro torce ed il mantenimento di due torce per la combustione del biogas, rispettivamente con portata massima di combustione pari a 500 Nm³/h e 800 Nm³/h. Si ricorda, inoltre, come il Gruppo aveva avviato nel 2019 l'impianto sperimentale "Biomether" per la produzione di biometano ad uso autotrazione a partire dal biogas residuo prodotto dai settori 1°, 2° e 3° e di una quota parte del biogas captato dai settori 5°- 6° per l'arricchimento del flusso di gas. Tale attività di sperimentazione è stata svolta anche nel corso del 2021 fino alla sua cessazione avvenuta in data 28/10/2021²⁸.

Il piano di monitoraggio dell'impianto prevede attualmente un controllo semestrale della qualità del biogas prima dell'ingresso alle centrali di aspirazione. Di seguito, per motivi di sintesi, si limita la serie dei dati ai parametri maggiormente indicativi della caratterizzazione energetica del biogas, ottenuti come media dei dati rilevati dai settori di discarica, dai quali si evince un andamento pressoché stazionario. La percentuale di metano contenuta nel biogas è in funzione di diverse variabili, quali umidità, composizione del rifiuto, età del rifiuto.

Tabella 4 Caratterizzazione energetica del biogas

PARAMETRO	U.M.	2021	2022	2023
Metano	%vol	36,16	38,34	40,79
Anidride carbonica	%vol	30,1	31,89	32,04
Azoto	%vol	31,78	32,21	25,47
Ossigeno	%vol	1,89	1,56	0,96
Potere Calorifico Inferiore a 0°C	kcal/mc	3.100	3.302	3.610

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

²⁷ Comunicazione di fine lavori PG HA 20289 del 30/12/2021.

²⁸ Comunicazione PG HA 17147 del 29/10/2021.

IL PROGETTO BIOMETHER LIFE: Biometano da discarica

Biomether Life è un progetto cofinanziato dalla Regione Emilia-Romagna e dal Programma Life, strumento finanziario dell'Unione Europea a supporto di progetti innovativi attinenti ad obiettivi comunitari, allo sviluppo sostenibile, compresi lo sviluppo o la diffusione di tecniche, know-how e tecnologie finalizzati alle migliori pratiche.

Il "Progetto Biomether" promuove l'avvio e il successivo sviluppo della filiera del biometano in Emilia-Romagna ed ha l'obiettivo sia di dimostrare la fattibilità tecnica e la sostenibilità della produzione ed uso del biometano che di monitorare e raccogliere informazioni tecniche, economiche, ambientali per sostenere e promuovere la filiera biogasbiometano in Regione, attraverso la realizzazione di due impianti sperimentali per l'upgrading di biogas e la produzione di biometano da immettere in rete e per autotrazione.

Herambiente ha partecipato al progetto con l'avvio dell'impianto dimostrativo di upgrading realizzato in forza a specifica autorizzazione unica ai sensi dell'art. 211 del D. Lgs. 152/2006 in capo ad Herambiente Spa (DET-AMB-2017-5804 del 30/10/2017 e s.m.i.). L'impianto sperimentale è volto alla produzione di biometano mediante upgrading del biogas di discarica residuo captato dal 1°, 2° e 3° settore, arricchito da una quota di biogas captato dai settori 5° - 6°, della discarica di rifiuti non pericolosi ubicata nel Comparto km 2,6 di Ravenna. Il biometano prodotto è utilizzato quale combustibile di alimentazione degli autobus della flotta del servizio di trasporto pubblico di Ravenna.

Nel corso del 2019 l'impianto sperimentale è entrato a regime e sono state avviate le operazioni di recupero del biogas con produzione e avvio del biometano all'azienda di trasporto pubblico al fine del suo utilizzo fino al termine dell'attività di sperimentazione avvenuta in data 28/10/2021.

10.4 TRATTAMENTO CHIMICO-FISICO

L'impianto chimico-fisico tratta rifiuti speciali liquidi anche pericolosi provenienti prioritariamente dagli impianti coinsediati nello stesso comparto (percolato, acque di processo, ecc.) nonché flussi provenienti dall'esterno (conto terzi e percolati di discarica) per convertirli in reflui depurati. Il trattamento si realizza mediante processi chimici (uso di reagenti) e fisici (uso di ausili meccanici).

L'impianto TCF risulta suddiviso nelle seguenti sezioni:

- ricevimento e stoccaggio dei rifiuti liquidi in ingresso;
- trattamento emulsioni oleose;
- omogeneizzazione;
- trattamento chimico-fisico con adsorbimento;
- trattamento chimico-fisico di primo stadio e di secondo stadio;
- trattamento fanghi mediante ispessimento.

I reflui in uscita dalle varie sezioni di trattamento dell'impianto TCF, accumulati nella vasca finale (VF), vengono rilanciati tramite condotta all'impianto TAS del Centro Ecologico Baiona e sottoposti a controllo analitico sia presso il TCF che il TAS.

All'interno delle aree di pertinenza dell'impianto TCF, è presente anche una sezione di accumulo (vasca VP) dei flussi di acque reflue dei Comparti km 2,6 e km 3,8 che non necessitano di trattamento specifico e che possono pertanto essere rilanciati via condotta direttamente al TAS.

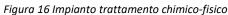
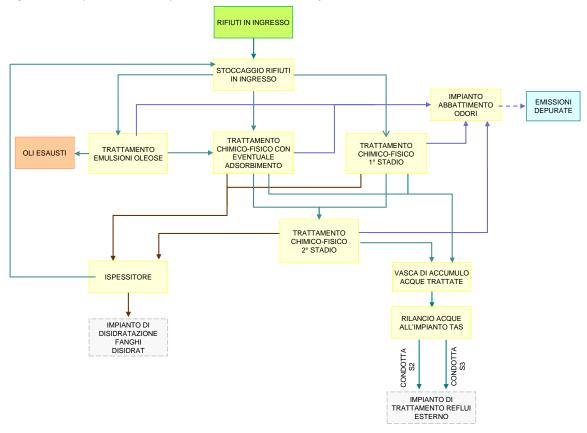



Figura 17 Ciclo produttivo dell'impianto di trattamento chimico-fisico (TCF)

10.4.1 Rifiuti trattati

L'impianto è autorizzato a trattare rifiuti speciali liquidi pericolosi e non per un quantitativo pari a 220.000 ton/anno. In via prioritaria l'impianto è dedicato al trattamento dei rifiuti liquidi prodotti dagli impianti ubicati nel comparto stesso in linea con l'organizzazione aziendale che privilegia la gestione interna dei rifiuti, ricorrendo all'utilizzo di impianti esterni di trattamento solo nel caso in cui non sia possibile una gestione alternativa.

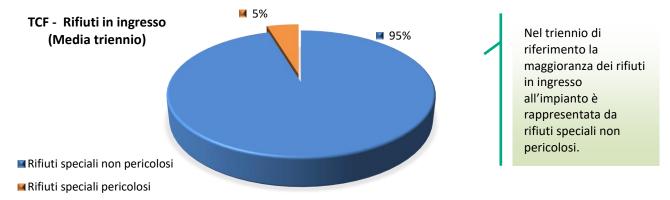
Gli ingressi possono essere aggregati per provenienza e per modalità di approvvigionamento in:

- flussi interni: conferimento rifiuti liquidi tramite condotta da impianti del Comparto, che costituiscono mediamente il 53% del totale degli ingressi e si compongono di percolati delle discariche, acque di processo dell'impianto Disidrat, acque meteoriche e di processo provenienti dal Centro HASI ed una quota delle acque meteoriche delle discariche per rifiuti pericolosi e non;
- flussi esterni: conferimento, per il restante 47 % del totale degli ingressi, di rifiuti liquidi tramite autobotti sia da impianti del Gruppo esterni al Comparto che da attività industriali.

Figura 18 Tubazioni di trasporto del rifiuto liquido in ingresso

Di seguito si riportano i quantitativi trattati nel periodo di riferimento dai quali si evince un incremento degli ingressi nel 2023 indotto dalla piovosità che ha caratterizzato l'anno. L'incremento è, in parte, ascrivibile anche all'emergenza alluvione che ha colpito l'Emilia – Romagna nel mese di maggio e che ha coinvolto direttamente l'impianto TCF, con l'ingresso di un maggiore quantitativo di rifiuti rispetto all'ultimo triennio. L'andamento

degli ingressi all'impianto rispecchia il regime pluviometrico del periodo. Si sottolinea, inoltre, che nel 2022, in seguito all'entrata in funzione della vasca VA1, gli ingressi provenienti dal Comparto via condotta si sono ridotti, essendo parte di questi (acque di dilavamento discariche 1°/2° stralcio e 4° stralcio) inviati direttamente all'impianto TAS del Centro Ecologico Baiona.


Tabella 5 Riepilogo ingressi – Impianto TCF

Rifiuti in ingresso	U.M.	2021	2022	2023
Rifiuti Non Pericolosi	tonn	110.347	109.720	142.777
Rifiuti Pericolosi	tonn	5.595	5.100	6.961
Totale Ingressi	tonn	115.941	114.820	149.738

FONTE: ESTRAZIONI DA SOFTWARE GESTIONE RIFIUTI

I rifiuti in ingresso sono prevalentemente non pericolosi (Figura 19) e, tra questi, il contributo maggiore è dato dal percolato da discariche, ovvero il rifiuto generato nel corpo delle discariche principalmente per infiltrazione delle acque meteoriche nei rifiuti stoccati. I rifiuti pericolosi, invece, sono costituiti da reflui provenienti da impianti esterni al gruppo.

Figura 19 Composizione percentuale rifiuti trattati (media triennio 2021 - 2023)

10.4.2 Stoccaggio

I rifiuti in ingresso sono raccolti in un'apposita area di stoccaggio che, ad oggi, conta 6 vasche in cemento armato e 5 serbatoi, di cui 4 in acciaio al carbonio e 1 in acciaio vetrificato particolarmente adatto per reflui con elevate caratteristiche di aggressività chimica. Da qui i rifiuti vengono trasferiti, tramite condotta, alle successive fasi di trattamento a seconda del carico inquinante che li caratterizza.

10.4.3 Trattamento emulsioni oleose

Le emulsioni oleose e i rifiuti liquidi a base oleosa vengono sottoposti ad un trattamento preliminare di rottura delle emulsioni, in due reattori dotati di agitatori, tramite aggiunta di un apposito reagente che permette la separazione della fase acquosa, inviata al successivo pretrattamento chimico-fisico con eventuale adsorbimento, da quella oleosa destinata a smaltimento in impianti esterni.

Per migliorare il trattamento delle emulsioni oleose è stata inoltre prevista la possibilità di dosaggio di un reagente acido o rifiuto acido per ottimizzare e accelerare il processo di separazione della fase oleosa dall'acqua.

10.4.4 Omogeneizzazione

I rifiuti liquidi, prima di essere inviati al trattamento chimico-fisico, vengono omogeneizzati attraverso agitazione meccanica in una vasca dedicata. Tale modalità consente di ottenere un flusso omogeneo in ingresso

al trattamento, in modo da ottimizzare la gestione dei dosaggi e favorire gli interventi correttivi in caso di variazione delle caratteristiche analitiche del flusso alimentato.

10.4.5 Trattamento chimico-fisico con eventuale adsorbimento

Tale linea di trattamento è dedicata ai rifiuti contenenti inquinanti organici anche con caratteristiche acide. Gli ingressi riguardano principalmente rifiuti contenenti tracce di oli, solventi e tensioattivi, comprese le acque in uscita dal trattamento oleoso.

I flussi in ingresso vengono preliminarmente omogeneizzati in una vasca in cui mediante agitatori meccanici viene favorita anche la miscelazione di calce ed eventualmente carbone attivo al fine di correggere il pH e facilitare l'assorbimento di eventuali oli presenti. Successivamente, vengono dosati i reagenti chimici quali flocculanti e complessanti per metalli pesanti al fine di favorire la formazione di fiocchi all'interno della vasca di flocculazione e quindi la separazione della fase solida da quella liquida. Dalla vasca di flocculazione il refluo in uscita viene, infine, alimentato nel sedimentatore da cui il chiarificato può essere inviato ad una delle sezioni di trattamento chimico-fisico di secondo stadio oppure alla vasca finale, mentre il fango viene rilanciato alla sezione di ispessimento fanghi.

10.4.6 Trattamento chimico-fisico

L'impianto in esame è caratterizzato da due stadi di trattamento.

Il **primo stadio** è costituito da due linee di trattamento identiche che lavorano in parallelo. I rifiuti alimentati al trattamento sono costituiti principalmente da percolati di discariche, acque provenienti dalla disidratazione fanghi del Disidrat, acque meteoriche di dilavamento delle aree interne al comparto, oltre ai rifiuti liquidi conferiti da terzi via autobotte.

Questi rifiuti prima di essere alimentati alla sezione di trattamento subiscono un'omogeneizzazione in vasca e, all'occorrenza, viene dosato del rifiuto acido per abbassare il pH ai valori ottimali per l'esercizio del trattamento. Ogni linea è costituita da:

- una vasca di reazione, in cui attraverso il dosaggio di agenti coagulanti viene favorita la coagulazione dei contaminanti (metalli e altri colloidi);
- una vasca di neutralizzazione e flocculazione, dove grazie al dosaggio di latte di calce e polielettrolita viene favorito l'accrescimento dei fiocchi, formatisi nelle vasche precedenti;

(1° e 2° stadio)

un sedimentatore dove avviene la separazione gravimetrica tra la frazione solida e liquida.

Le correnti in uscita dal primo stadio sono costituite da:

- fango pompabile destinato all'ispessitore;
- rifiuto liquido destinato al secondo stadio o, nel caso in cui non debba subire ulteriore trattamento, alla vasca di accumulo finale.

Il **secondo stadio** è anch'esso costituito da due linee funzionanti in parallelo. Entrambe sono composte da un reattore, in cui i reflui vengono additivati con reagenti coagulanti, complessanti e flocculanti al fine di favorire la precipitazione dei metalli e la formazione dei fiocchi.

Le acque così trattate vengono successivamente convogliate al sedimentatore dove la frazione solida viene separata per gravità.

Le correnti in uscita dal secondo stadio sono costituite da:

- fango pompabile destinato all'ispessitore;
- rifiuto liquido trattato destinato alla vasca di accumulo finale.

Figura 20 Particolare sezione di trattamento chimico-fisico

10.4.7 Accumulo e rilancio finale

I reflui in uscita dalle varie sezioni di trattamento vengono stoccati nella vasca di accumulo finale e rilanciati tramite condotta dedicata all'impianto TAS del Centro Ecologico Baiona. Il refluo è sottoposto a verifica analitica presso il TCF e TAS.

10.4.8 Sezione ispessimento fanghi

I fanghi prodotti da tutte le linee di trattamento chimico-fisico vengono inviati all'ispessitore e da qui rilanciati, mediante pompe, all'adiacente impianto di disidratazione fanghi.

L'ispessitore è costituito da una vasca di calma dotata di raschi di fondo che raccolgono la fase fangosa sedimentata sul fondo. Il surnatante in uscita dall'ispessitore viene scaricato per gravità in un pozzetto dedicato, da cui viene rilanciato alla vasca di omogeneizzazione o in una delle vasche di stoccaggio in testa all'impianto.

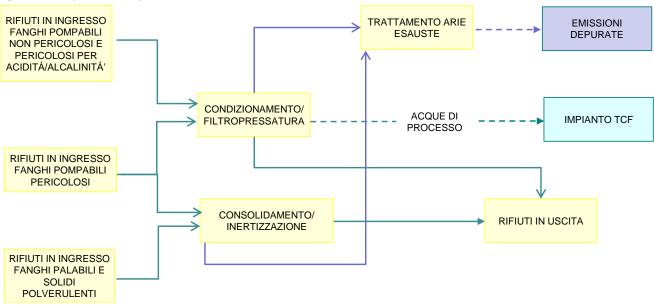
Figura 21 Ispessitore fanghi

10.5 IMPIANTO DISIDRAT

L'impianto DISIDRAT è stato realizzato per trattare diverse tipologie di rifiuti pompabili, palabili e polverulenti anche pericolosi, con il principale obiettivo di ottenere in uscita delle matrici (rifiuti) che possano per quanto possibile essere destinate al recupero invece che seguire la via dello smaltimento. Il rifiuto derivante da operazioni di recupero può essere utilizzato per la copertura delle discariche, in sostituzione di terreno vegetale vergine, per ripristini ambientali, inviato a cementifici o miniere estere come materiale di riempimento.

Figura 22 Impianto Disidrat

L'impianto è costituito da tre linee distinte di lavorazione/trattamento dedicate ognuna a specifiche macrocategorie di rifiuti in ingresso:


- Linea fanghi pompabili non pericolosi (linea 1) o pericolosi per alcalinità/acidità²⁹;
- Linea fanghi pompabili pericolosi (linea 2);
- Linea fanghi palabili e rifiuti polverulenti (linea 3).

²⁹ Caratteristiche di pericolo dei rifiuti pericolosi per alcalinità/acidità: HP4 o HP8 ai sensi del Regolamento (CE) 1272/2008.

Le linee si distinguono per differenti operazioni meccaniche condotte ed anche per differenti reagenti utilizzati. Ciascuna linea di lavorazione/trattamento è costituita a sua volta da una sezione di ricevimento e stoccaggio dei rifiuti in ingresso e da una sezione di trattamento.

Si precisa che alle tre linee menzionate si affianca un'ulteriore sezione autonoma di trattamento, seppur integrata nell'impianto, a cui sono destinati terreni e fanghi palabili pericolosi e non, che vengono sottoposti, come fase di pretrattamento, ad operazioni di miscelazione e omogeneizzazione per essere destinati allo smaltimento/recupero presso impianti esterni.

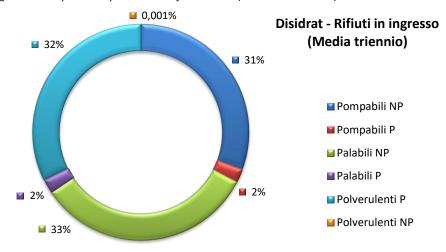
Figura 23 Ciclo produttivo impianto Disidrat

10.5.1 Rifiuti trattati

L'impianto è autorizzato a trattare **150.000 tonn/anno** di rifiuti che presentano caratteristiche chimico-fisiche ad ampio spettro, riassumibili nelle seguenti macro-categorie:

- <u>fanghi pompabili non pericolosi o pericolosi per alcalinità/acidità,</u> costituiti da fanghi provenienti da pulizia di depuratori, piattaforme ecologiche, fanghi da perforazioni petrolifere (offshore), ecc.;
- <u>fanghi pompabili pericolosi</u>, costituiti da fanghi contenenti oli, fanghi provenienti da impianti chimico-fisici o dalla pulizia di corpi tecnici che contengono sostanze pericolose;
- <u>fanghi palabili non pericolosi:</u> fanghi biologici da depuratori delle acque reflue urbane, detriti non pericolosi, ecc.;
- fanghi palabili pericolosi, costituti da terreni di bonifica, fanghi da dragaggio canali, detriti pericolosi, ecc.;
- <u>rifiuti polverulenti anche pericolosi</u> costituiti principalmente da ceneri leggere prodotte da impianti di termovalorizzazione del Gruppo Herambiente.

Di seguito sono riportati i quantitativi di rifiuti trattati nel triennio dai quali si evince un andamento crescente con un incremento più marcato nel 2023. L'aumento dei rifiuti in ingresso nel 2023 è anche attribuibile all'emergenza alluvione che ha colpito l'Emilia – Romagna nel mese di maggio e che ha determinato l'ingresso all'impianto di un quantitativo maggiore di rifiuti rispetto al periodo precedente.


Tabella 6 Riepilogo rifiuti trattati – Impianto Disidrat

Rifiuti in ingresso	U.M.	2021	2022	2023
Rifiuti pompabili non pericolosi	tonn	20.074	20.927	32.672*
Rifiuti pompabili pericolosi	tonn	2.294	716	798
Rifiuti palabili non pericolosi	tonn	12.585	17.370	29.552
Rifiuti palabili pericolosi	tonn	631	1.294	1.914
Rifiuti polverulenti pericolosi	tonn	15.032	19.979	23.364
Rifiuti polverulenti non pericolosi	tonn	0	2,58	0
Totale Ingressi	tonn	50.617	60.288,58	88.300

FONTE: ESTRAZIONI DA SOFTWARE DI GESTIONE RIFIUTI

Come visibile dal grafico sotto riportato, la maggioranza dei rifiuti trattati è rappresentata sia da rifiuti palabili non pericolosi (derivanti principalmente dai depuratori e da impianti chimico-fisici del Gruppo/terzi) che da rifiuti polverulenti pericolosi (derivanti prevalentemente da trattamento termico) che costituiscono, insieme, il 65% degli ingressi. Si attestano, invece, al 31% i fanghi pompabili non pericolosi, provenienti principalmente da perforazioni petrolifere, pulizie stradali e impianti chimico-fisici. Seguono i rifiuti pompabili pericolosi ed i rifiuti palabili pericolosi, quest'ultimi caratterizzati da una lieve crescita nel triennio di riferimento data dalla maggiore disponibilità da parte di impianti terzi di recupero. In ultimo con il 0,001%, si trovano i rifiuti polverulenti non pericolosi, che sono risultati nulli nel 2021 e 2023.

Figura 24 Composizione percentuale rifiuti trattati (media 2021 – 2023)

10.5.2 Linea fanghi pompabili non pericolosi (Linea 1)

Questa linea di trattamento è dedicata sia ai fanghi pompabili non pericolosi, conferiti mediante autobotte, che ai fanghi ispessiti non pericolosi provenienti via tubo dall'attiguo impianto chimico-fisico e conferiti direttamente nelle apposite vasche di omogeneizzazione tramite il sistema di rilancio dello stesso ispessitore del TCF.

I trattamenti svolti si distinguono in:

- sedimentazione effettuata nelle prevasche antistanti quelle di omogeneizzazione;
- omogeneizzazione effettuata in vasche dedicate;
- condizionamento effettuato con specifici reagenti;
- disidratazione meccanica mediante filtropressa.

^{*} Comprendono una quota di rifiuto urbano da alluvione pari a 216 tonnellate.

Il fango, dopo aver subito una prima separazione della frazione sedimentabile nelle prevasche, viene mantenuto in agitazione nelle vasche di omogeneizzazione, quindi trasferito, attraverso condotta in acciaio, al primo serbatoio della linea di condizionamento.

Le linee di trattamento dei fanghi funzionano in continuo ed in sequenza: il fango passa attraverso i serbatoi di reazione, dove viene costantemente movimentato ed al quale si aggiungono i reagenti necessari ad ottimizzare la filtropressatura (agenti agglomeranti, flocculanti, polielettroliti) ed a immobilizzare gli inquinanti.

La quantità e tipologia di additivi utilizzati dipende dalla densità del fango, dalla tipologia e concentrazione di inquinanti presenti, ma anche dalla destinazione del filtropressato prodotto.

Il dosaggio standard prevede l'utilizzo di cloruro ferroso/ferrico e latte di calce.

Al termine del ciclo di condizionamento, il fango viene trasferito alla filtropressa, del tipo a piastre, che consente la separazione tra le sostanze solide, trattenute sulla tela, e la fase liquida che drena sulle piastre fino al collettore di scarico.

Le linee di filtropressatura sono due e la loro potenzialità complessiva di produzione è indicativamente pari a circa 300 m³/giorno (330 tonnellate/giorno).

Figura 25 Sezione di filtropressatura

Il fango disidratato in uscita dalla filtropressa viene infine scaricato in un'area sottostante per poi essere prelevato da una pala meccanica e trasportato nell'area di deposito o nell'area di maturazione dei fanghi palabili, mentre le acque di risulta sono trasferite nelle vasche di sedimentazione delle acque di processo in attesa di essere conferite all'impianto chimico-fisico.

10.5.3 Linea fanghi pompabili pericolosi (Linea 2)

In questa linea i fanghi pompabili pericolosi sono sottoposti ai seguenti trattamenti:

- consolidamento;
- inertizzazione;
- disidratazione (filtropressatura/centrifugazione).

Figura 26 Vasca di stoccaggio fanghi pompabili pericolosi

Nella vasca di stoccaggio in ingresso, i fanghi vengono omogeneizzati e trasferiti <u>o alla sezione di lavorazione</u> <u>dei fanghi palabili (linea di inertizzazione/condizionamento)</u>, che costituisce la destinazione prevalente di questa tipologia di fanghi, che verrà di seguito descritta, oppure <u>alla linea di condizionamento/filtropressatura</u>, per cui si rimanda alla linea dei fanghi pompabili, precedentemente esposta.

10.5.4 Linea fanghi palabili e rifiuti polverulenti (Linea 3)

In questa linea sono trattati terreni e fanghi palabili pericolosi e non, fanghi biologici, rifiuti solidi polverulenti, fanghi semisolidi (sedimentato) pericolosi e non prodotti rispettivamente dalla linea 2 e dalla linea 1 di trattamento.

Questi fanghi vengono sottoposti ad un processo costituito dai trattamenti di:

- consolidamento;
- inertizzazione, tramite l'aggiunta di reattivi quali calce e/o cemento oltre al possibile utilizzo di altri additivi quali zeoliti, silicati e solfuro di sodio.

I fanghi sono lavorati in due linee distinte: linea A e linea B, che hanno la stessa potenzialità e che possono lavorare in parallelo. Le linee di inertizzazione possono, comunque, essere intercambiabili in funzione delle esigenze logistiche di lavorazione e/o stoccaggio o in caso di manutenzione programmata o straordinaria delle stesse.

La linea A di inertizzazione tratta ordinariamente i flussi di rifiuti non pericolosi, come: fanghi biologici, terreni e fanghi palabili, fanghi semisolidi provenienti dalla linea fanghi pompabili non pericolosi (linea 1). I fanghi ed i terreni subiscono un trattamento analogo a quello effettuato nella linea B, ad eccezione della deferizzazione prevista in tale linea. Il fango, prima di essere introdotto nel reattore/miscelatore, passa attraverso un deferrizzatore che separa i materiali ferrosi eventualmente presenti che vengono poi accumulati in un cassone dedicato e vengono aggiunti reattivi (es. calce e cemento oppure rifiuti con caratteristiche analoghe). Da entrambe le linee, infine, il fango sia pericoloso che non pericoloso viene scaricato all'interno dell'edificio dei fanghi inertizzati in due zone separate, dalle quali attraverso pale gommate vengono trasferiti alle aree di deposito/maturazione.

<u>La linea B di inertizzazione</u> è dedicata ordinariamente ai rifiuti pericolosi, quali: fanghi pompabili (provenienti dalla linea 2), terreni e fanghi palabili, rifiuti polverulenti, fanghi semisolidi provenienti dalla linea 2.

La linea ha in testa una tramoggia di alimentazione in cui vengono caricati i terreni mediante pala meccanica e dove, alla bocca di ingresso, è presente un vaglio che consente di separare pezzature di materiale grossolano. In uscita dal vaglio, il fango viene poi prelevato da un nastro estrattore e scaricato su una linea di nastri trasportatori fino all'inertizzatore. Per i rifiuti, per i quali risulta necessario un pretrattamento di vagliatura, è presente in linea ai nastri trasportatori un vaglio a tamburo che consente di separare ulteriormente frazioni grossolane di materiale (sopravaglio) raccolte in apposito cassone scarrabile. Se non è necessario l'utilizzo dei vagli questi possono essere rimossi per agevolare le attività di movimentazione e scarico rifiuti.

In alternativa, il fango può essere introdotto direttamente nel miscelatore tramite pala meccanica attraverso apertura di apposito portello posto sulla sua sommità. Nel reattore/miscelatore vengono aggiunti i rifiuti polverulenti, i fanghi pompabili e i fanghi di consistenza intermedia fra il palabile ed il pompabile e se necessario può essere dosato altro reagente (ad es. calce, cemento). L'impianto ha una potenzialità di oltre 200 tonnellate/giorno.

10.5.5 Sezione di stoccaggio rifiuti in uscita

In uscita dalle linee sopra menzionate si originano rifiuti sotto forma di fanghi palabili che vengono stoccati, in cumuli, in strutture di impianto dedicate. Si tratta di due aree attrezzate denominate Area Nord e Area Sud, rispettivamente di superficie pari a 1.165 m³ e 925 m³.

I quantitativi di fango prodotto saranno rendicontati al paragrafo "Rifiuti in uscita" (§ 12.9).

Figura 27 Area stoccaggio rifiuti ingresso e uscita

11 GESTIONE DELLE EMERGENZE

Il sistema di gestione prevede procedure specifiche per ogni sito che definiscono le modalità comportamentali da tenersi in caso di specifiche emergenze ambientali.

Le situazioni di emergenza ipotizzabili e, quindi, considerate nella documentazione di sistema sono:

- incendio;
- fuga di gas metano;
- scoppio per rottura di componente in pressione;
- inondazione/allagamento;
- temporali/scariche atmosferiche;
- terremoto;
- tromba d'aria;
- black-out rete elettrica;
- sversamento materie prime/rifiuti prodotti;
- sversamento percolato;
- sversamento reflui liquidi;
- sversamento fanghi;
- sversamento polverino;
- spargimento di rifiuti urbani;
- sversamento oli e carburanti;
- sversamento reagenti;
- rottura sistema di impermeabilizzazione discarica;
- malfunzionamento sistemi di abbattimento delle emissioni;
- infortunio o malore;
- incidente stradale.

Per ognuno di questi eventi sono previste le prime misure da adottare per ridurre i rischi per la salute del personale e per l'ambiente. Presso il sito sono svolte annualmente prove di emergenza ambientale.

Relativamente all'impianto TCF, in data 17/02/2021, è stato riscontrato un trafilamento di lieve entità dalla valvola di sfiato aria posta sulla linea di scarico S3 all'interno di un pozzetto intermedio ubicato in un'area prossima al Centro Ecologico Baiona e dedicato all'ispezione delle linee interrate S2/S3/S4. La linea S3, come descritto al § 12.3, è la tubazione interrata di rilancio che convoglia i reflui in uscita dal trattamento chimicofisico all'Impianto TAS (Impianto chimico-fisico-biologico di trattamento delle acque reflue industriali) del Centro Ecologico Baiona. Herambiente ha provveduto a trasmettere³⁰ ad ARPAE comunicazione di potenziale contaminazione ed eventuale minaccia di danno ambientale ai sensi dell'art. 249 del D.Lgs. 152/06 e s.m.i., all'interno della quale sono state illustrate le misure di prevenzione e di messa in sicurezza adottati. In particolare, si è proceduto tempestivamente allo svuotamento e pulizia del pozzetto e all'aspirazione del refluo fuoriuscito. Successivamente si è provveduto alla rimozione dei terreni ai fini delle verifiche di accertamento di qualità ambientale. Come richiesto dall'Autorità competente, Herambiente ha trasmesso³¹ comunicazione di autocertificazione di non superamento delle Concentrazioni di Soglia di Contaminazione connessi alla destinazione d'uso del sito prevista dal vigente strumento urbanistico comunale, cui è stata allegata la relazione tecnica contenente il Report delle attività eseguite presso il sito, al fine di chiusura del procedimento.

³⁰ Prot. 3237 del 18/02/2021.

³¹ Prot. 4930 del 18/03/2021.

I MONITORAGGI INTEGRATI E GLI INCONTRI CON I CITTADINI

La gestione del sito affianca ai monitoraggi interni previsti dai Piani di Monitoraggio dei singoli impianti anche monitoraggi gestiti dall'autorità di vigilanza ARPAE – Area Prevenzione Ambientale Est. I controlli esterni sono disciplinati nei Protocolli triennali, l'ultimo sottoscritto nel 2021 (2021 – 2023). L'obiettivo dell'attività svolta da ARPAE è integrare la valutazione dell'impatto esercitato dal sito, attraverso la misura di alcuni parametri rappresentativi della qualità delle matrici analizzate, ampliando ed integrando il set di dati già previsti nei piani di monitoraggio prescritti dai provvedimenti di AIA ed effettuati dai gestori degli impianti coinsediati nel Comparto. Gli approfondimenti sullo stato ambientale generale prevedono campagne analitiche su acqua di falda ed aria (particolato atmosferico – deposizione atmosferica). Annualmente ARPAE redige una relazione sugli esiti dell'attività di monitoraggio che viene inviata ad Herambiente. Herambiente Spa, congiuntamente ad Hera S.p.a. Ravenna, ha organizzato in passato incontri ed è sempre disponibile a pianificarne dei nuovi con i Comitati delle comunità locali limitrofe al sito e le principali funzioni istituzionali degli Enti di governo del territorio. In occasione degli incontri, gli esiti delle analisi sono esposti dal personale di ARPAE che informa e supporta i presenti nell'interpretazione dei dati.

12 ASPETTI AMBIENTALI DIRETTI

12.1 ENERGIA

La fonte energetica più rilevante utilizzata all'interno del complesso impiantistico è l'energia elettrica. Nell'attuale configurazione del Comparto la produzione energetica, che contribuisce in parte a soddisfare i consumi complessivi, è garantita principalmente dalla discarica per rifiuti non pericolosi con la produzione di energia elettrica a partire dal biogas ed un bilancio energetico positivo, e secondariamente dall'impianto fotovoltaico installato presso il Disidrat nel mese di giugno 2020. L'analisi puntuale per singolo impianto è comunque affrontata nelle seguenti sezioni specifiche.

12.1.1 Impianto TM

Nell'Impianto TM la fonte energetica utilizzata era l'energia elettrica, per alimentare tutti gli apparati impiantistici presenti (nastri trasportatori, vagli, ecc.), ed il gasolio per il gruppo elettrogeno a servizio degli uffici in caso di emergenza. Nel 2023 l'impianto è stato riattivato temporaneamente da maggio a novembre a causa dell'emergenza alluvione e, in tale periodo, ha utilizzato energia elettrica. Si riportano in Tabella 7 i consumi di energia elettrica in quanto quelli di gasolio sono risultati nulli, espressi sia nell'unità di misura convenzionale che in termini di energia primaria (tep).

Tabella 7 Riepilogo consumi energetici – Impianto TM

	U.M.	2021	2022	2023
Energia elettrica	MWh	342	0	3,14
Totale	tep	63,93	0	0,06

FONTE: REPORT INTERNI

12.1.2 Discariche

Il sistema di recupero energetico del biogas (descritto al § 10.3.6) presente presso la discarica per rifiuti non pericolosi è costituito attualmente da quattro motori endotermici: "Ravenna 2", "Ravenna 3", "Ravenna 4b" e "Ravenna 4a".

Si riportano nella seguente tabella, per il triennio di riferimento, i quantitativi di energia elettrica prodotta, ottenuti sottraendo la parte relativa all'autoconsumo dei motori di recupero energetico, utilizzati per alimentare sia le utenze al servizio delle discariche (es. impianti estrazione percolato) che le utenze elettriche del Comparto Herambiente. La quantità di energia elettrica eccedente rispetto alla richiesta interna, se presente, viene immessa nella rete di distribuzione nazionale.

Il periodo di riferimento è caratterizzato da un andamento variabile nella produzione di energia elettrica; si osserva una lieve decrescita dal 2021 al 2022 dovuta, in parte, alla minore attività di metanogenesi dal corpo discarica, a causa dell'esaurimento dei vari settori, mentre si registra un incremento nel 2023 dovuto al riassetto della rete di captazione del biogas che ha permesso una minimizzazione del funzionamento delle torce.

Tabella 8 Riepilogo dati di produzione energetica discariche

	U.M.	2021	2022	2023
Energia elettrica ceduta	MWh	8.805	8.086	9.554
	tep	1.647	1.512	1.787

FONTE: REPORT INTERNI

Di seguito è riportato l'indicatore "Efficienza di recupero energetico" (Figura 33) inteso come la quantità di energia prodotta dai motori endotermici per unità di biogas captato e inviato ai motori, risultato pari a 6.615.248 Nm³ nel 2023. L'andamento dell'indicatore è lievemente crescente in relazione all'intervento di ottimizzazione della gestione del processo di recupero energetico, che ha permesso di assicurare la gestione sinergica dei quattro motori endotermici e diminuire il ricorso alla torcia per bruciare il biogas (si veda § 14).

Figura 28 Andamento dell'indicatore "Efficienza di recupero energetico"

Relativamente ai consumi energetici, durante il periodo di coltivazione delle discariche i consumi maggiori erano imputabili ai carburanti necessari al funzionamento dei mezzi d'opera coinvolti nelle operazioni di compattazione del rifiuto; inoltre, il carburante era utilizzato anche per le attività ausiliarie come movimento delle terre, realizzazione di terrapieni e argini. Per i consumi di gasolio utilizzati nella gestione delle discariche presenti nel sito si rimanda al paragrafo 13, relativo agli **aspetti indiretti** in quanto derivanti da attività gestite da terzi.

La seconda fonte energetica è l'energia elettrica che trova impiego nelle utenze relative a uffici/servizi ed impianti tecnologici (pompe per la captazione biogas e percolato, illuminazione, ecc.).

Nella Tabella 9 si riportano i quantitativi assoluti di energia elettrica prelevata dalla rete di distribuzione, espressi sia nell'unità di misura convenzionale che in termini di energia primaria (tep), che risultano nel triennio lievemente variabili.

Tabella 9 Riepilogo consumi energetici - Discariche

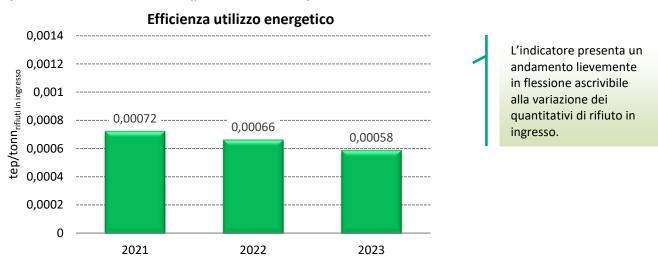
	U.M.	2021	2022	2023
Energia elettrica prelevata	MWh	52	195	197
	tep	10	36	37

FONTE: REPORT INTERNI

12.1.3 Trattamento Chimico-fisico

Nell'impianto TCF la fonte energetica maggiormente utilizzata è l'energia elettrica che incide per oltre il 90% sui consumi energetici totali di impianto, impiegata per alimentare tutti gli apparati impiantistici come pompe, agitatori, sistemi di aspirazione, coclee. Il metano è, invece, destinato al solo riscaldamento dei locali ad uso uffici e sede dei trattamenti. Da evidenziare come l'impianto utilizzi parte dell'energia elettrica prodotta dal sistema di recupero energetico del biogas presente presso la discarica.

In Tabella 10 si riportano i consumi energetici dell'impianto relativi al triennio di riferimento, espressi sia nell'unità di misura convenzionale che in termini di energia primaria (tep), dai quali si evince un consumo di energia elettrica variabile nel triennio, in relazione ai quantitativi ed alla tipologia di rifiuti conferiti, così come risulta variabile il consumo di metano correlabile alle condizioni climatiche, in quanto utilizzato per il riscaldamento degli uffici.


Tabella 10 Riepilogo consumi energetici – TCF

Fonte energetica	U.M.	2021	2022	2023
Energia elettrica	MWh	445	403	466
Metano	Sm ³	3.004	2.059	2.370
Totale	tep	86	77	89

FONTE: LETTURE CONTATORI/PIT

L'indicatore "Efficienza di utilizzo energetico", basato sul rapporto tra energia elettrica consumata utilizzata nel processo e rifiuto in ingresso all'impianto, è riportato nel grafico seguente. Da evidenziare come il consumo di energia elettrica è costituito da una quota "fissa" indipendente dai trattamenti svolti, necessaria per garantire il funzionamento giornaliero degli impianti e delle apparecchiature, la quale incide in modo significativo sull'andamento dell'indicatore qualora la quota "variabile" dei consumi, correlata agli effettivi trattamenti svolti, diminuisca a seguito di un decremento dei quantitativi di rifiuti trattati.

Figura 29 Andamento dell'indicatore "Efficienza di utilizzo energetico"

12.1.4 Impianto Disidrat

Il fabbisogno energetico dell'impianto è soddisfatto esclusivamente dall'utilizzo di energia elettrica, impiegata per alimentare tutti gli apparati impiantistici presenti (filtropresse, vaglio, mixer, agitatori, ecc.), compresi i sistemi di abbattimento delle emissioni in atmosfera (scrubber e cicloni). Come per l'impianto chimico-fisico, il fabbisogno di energia elettrica è in parte soddisfatto dal sistema di recupero energetico del biogas presente presso la discarica. Inoltre, a partire dal mese di giugno 2020, è stato attivato un impianto fotovoltaico di potenza pari a 134,4 kW, installato in copertura al capannone fanghi palabili nord, che ha consentito di diminuire il prelievo di energia elettrica da rete a favore di consumo di risorsa rinnovabile. L'energia prodotta

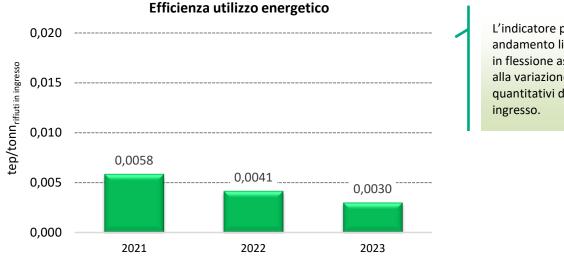
è consumata in via esclusiva dalle utenze interne all'impianto. I dati di produzione di energia elettrica sono riportati nella seguente tabella dalla quale si evince un andamento costante nel triennio di riferimento.

Tabella 11 Produzione di energia elettrica impianto fotovoltaico

Fonte energetica	U.M.	2021	2022	2023
Energia elettrica	MWh	170,52	169,20	169,90
Totale	tep	32	32	32

FONTE: LETTURE CONTATORI

I consumi energetici dell'impianto, espressi sia nell'unità di misura originaria sia in termini di energia primaria (tep), sono riportati nella Tabella 12 e presentano nel triennio una ridotta variabilità con un consumo leggermente maggiore nel 2021, a seguito dell'avviamento dei mixer dedicati al processo e dell'installazione di nuove UTA, e nel 2023, in seguito all'avviamento di ulteriori nuovi mixer ed ai maggiori quantitativi di rifiuto in ingresso.


Tabella 12 Riepilogo consumi energetici – Disidrat

Fonte energetica	U.M.	2021	2022	2023
Energia elettrica	MWh	1.573	1.328	1.405
Totale	tep	294	248	263

FONTE: LETTURE CONTATORI

Si riporta nel grafico seguente l'indicatore "Efficienza di utilizzo energetico", calcolato sulla base dell'energia elettrica consumata dall'impianto per unità di rifiuto trattato. Come per l'impianto TCF il consumo di energia elettrica è costituito da una quota "fissa" indipendente dai trattamenti svolti, necessaria per garantire il funzionamento giornaliero degli impianti e delle apparecchiature, la quale incide in modo significativo sull'andamento dell'indicatore qualora la quota "variabile" dei consumi, correlata agli effettivi trattamenti svolti, diminuisca a seguito di un decremento dei quantitativi di rifiuti trattati.

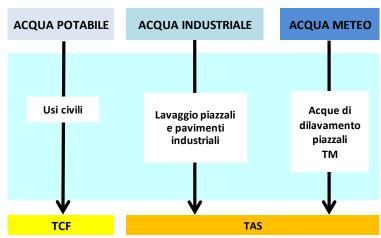
Figura 30 Andamento dell'indicatore "Efficienza di utilizzo energetico"

L'indicatore presenta un andamento lievemente in flessione ascrivibile alla variazione dei quantitativi di rifiuto in

12.2 CONSUMO IDRICO

La risorsa idrica utilizzata dagli impianti del Comparto proviene da:

- rete dell'acqua potabile;
- rete dell'acqua industriale.


L'acqua industriale proviene anch'essa dal potabilizzatore ma è soggetta a trattamenti minori rispetto al ciclo di potabilizzazione in quanto tenuta a rispettare parametri d'uso più grezzi e il suo consumo è predominante rispetto all'utilizzo di acqua potabile, evidenziando l'attenzione sul tema del risparmio idrico. Il consumo di acqua potabile è, infatti, limitato a poche utenze di cui la preponderante è l'uso civile.

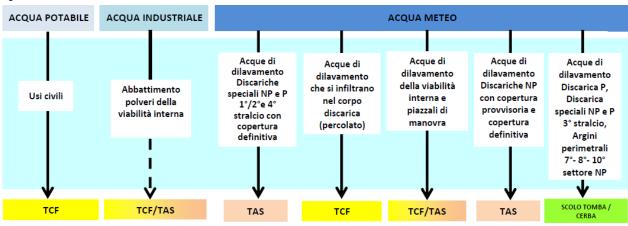
La significatività è da riferirsi all'impianto Disidrat per superamento della soglia interna di consumo specifico (per unità di rifiuto trattato) di acqua industriale.

12.2.1 Impianto TM

L'Impianto TM non utilizzava acqua nel ciclo produttivo, pertanto, il consumo, essendo indipendente dai quantitativi dei rifiuti in ingresso, non è mai stato indicizzato. In Figura 31 è riportato il ciclo idrico dell'Impianto TM relativo al suo periodo di funzionamento.

Figura 31 Ciclo idrico dell'impianto TM

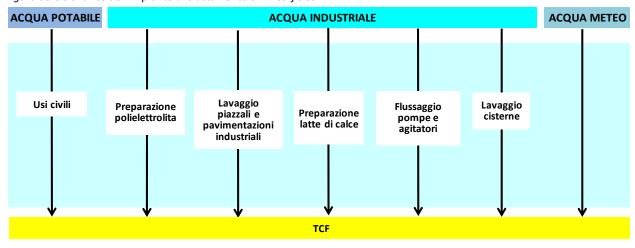
Come si evince dal ciclo idrico, l'acqua industriale era impiegata unicamente nelle operazioni di lavaggio e pulizie piazzali/impianto mentre l'acqua potabile era utilizzata per gli usi civili. Nel 2023 l'impianto è stato riattivato temporaneamente da maggio a novembre a causa dell'emergenza alluvione e, in tale periodo, ha prelevato acqua dall'acquedotto civile. Si riportano di seguito i consumi idrici con l'indicazione dell'uso specifico. Il monitoraggio della risorsa avveniva tramite lettura del contatore.


Tabella 13 Riepilogo consumi idrici – Impianto TM

Fonte idrica	Utilizzo	U.M.	2021	2022	2023
Acquedotto	Usi civili	m^3	106	0	79
Acqua Industriale	Pulizie industriali	m^3	253	0	0
TOTALE		m^3	359	0	79

FONTE: LETTURA CONTATORE

12.2.2 Discariche


Figura 32 Ciclo idrico delle discariche

Nel triennio di riferimento, il consumo della risorsa idrica nell'ambito della gestione delle discariche è imputabile soprattutto all'utilizzo di acqua industriale, nel caso in cui l'acqua meteorica di dilavamento recuperata dalle discariche per rifiuti pericolosi e non con copertura provvisoria/definitiva non risultava sufficiente, per la bagnatura della viabilità di accesso agli impianti nei periodi più secchi. I consumi di acqua potabile si limitano, invece, esclusivamente agli usi civili del personale impegnato negli uffici, con volumi trascurabili. Per entrambe le tipologie di risorsa idrica non si dispongono di misuratori specifici dei consumi.

12.2.3 Trattamento Chimico-fisico

Figura 33 Ciclo idrico dell'impianto di trattamento chimico-fisico

L'impianto sfrutta esclusivamente acqua industriale nel processo destinando l'utilizzo di acqua potabile ai soli usi civili (Figura 33). Nella tabella seguente sono riportati i consumi idrici del periodo di riferimento, suddivisi per tipologia di fonte di approvvigionamento e con l'indicazione dell'uso specifico. La frequenza di controllo dei consumi per entrambe le fonti idriche è mensile.

Tabella 14 Riepilogo consumi idrici – Impianto TCF

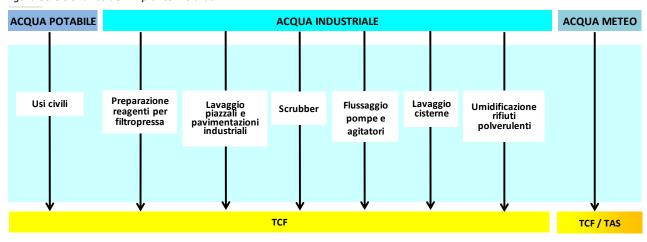
Fonte idrica	Utilizzo	U.M.	2021	2022	2023
Acquedotto*	Usi civili	m³	97	123	99
Acqua Industriale	Lavaggio piazzali e corpi tecnici, preparazione reagenti, flussaggio pompe, preparazione polielettrolita	m ³	10.257	12.653	12.901
TOTALE		m³	10.354	12.776	13.000

FONTE: LETTURA CONTATORI *Dato stimato

In riferimento al consumo di acqua potabile, si segnala che gli impianti TCF e Disidrat non dispongono di contatori separati. I valori del consumo di acqua potabile, riportati nelle Tabella 14 e Tabella 15, sono pertanto stimati suddividendo equamente il dato di consumo totale.

Dall'analisi dei dati, si evince nel triennio un andamento in lieve crescita nel consumo di acqua industriale influenzato, oltre che dal quantitativo di rifiuti in ingresso, anche dalle caratteristiche specifiche del rifiuto. Si ricorda comunque che nel triennio di riferimento si è proceduto sia ad una ottimizzazione del controllo del processo che all'automatizzazione del flussaggio delle tenute delle pompe a funzionamento alterno che ha permesso di variare la modalità del flussaggio da continuo a effettivo funzionamento.

L'indicatore "Efficienza di utilizzo della risorsa idrica", che relaziona i consumi di acqua con la quantità di rifiuti trattati, è rappresentato in Figura 34.


Figura 34 Andamento dell'indicatore "Efficienza di utilizzo della Risorsa idrica"

Si segnala l'impegno di ottimizzare il consumo idrico mediante la riduzione del ricorso all'acqua industriale prelevata da acquedotto, come riportato nel programma ambientale (si veda § 14). In particolare, nel 2022 è stata presentata Modifica non sostanziale³² di AIA inerente anche alla realizzazione di un sistema di recupero delle acque meteoriche da utilizzarsi in sostituzione parziale dell'acqua industriale le cui opere connesse sono in corso di realizzazione.

12.2.4 Impianto Disidrat

Figura 35 Ciclo idrico dell'impianto Disidrat

³² Comunicazione HA Prot. n. 0010137/22 del 08/08/2022 e Prot. 0015413/22 del 12/12/2022.

Il Disidrat, così come il TCF, impiega esclusivamente acqua industriale nel processo (Figura 35). In particolare, le principali esigenze idriche sono relative alla sezione di filtropressatura, in termini di preparazione dei reagenti e di lavaggio delle tele.

Al fine di evitare sprechi della risorsa idrica, viene attuato il recupero di acqua di processo di risulta dalla filtropressatura riutilizzata all'interno dell'impianto stesso per la preparazione delle soluzioni di reagenti necessari alle operazioni di filtropressatura. Inoltre, sono stati installati dei contatori sulle diverse linee per monitorare puntualmente i consumi idrici.

I consumi idrici registrati nel periodo di riferimento sono riportati nella tabella sottostante, come introdotto nel paragrafo precedente, i consumi di acqua potabile sono stimati. Relativamente ai consumi di acqua industriale si evidenzia nel triennio un andamento in leggera crescita, ascrivibile alle necessità di umidificazione delle ceneri provenienti da impianti di trattamento termico per l'idratazione degli ossidi metallici contenuti. La variabilità dei consumi di acqua industriale è inoltre influenzata dalla variazione del quantitativo di rifiuto in ingresso, quali rifiuti pompabili ed il relativo utilizzo di reagenti.

Tabella 15 Riepilogo consumi idrici – DISIDRAT

Fonte idrica	Utilizzo	U.M.	2021	2022	2023
Acquedotto*	Usi civili	m³	97	123	99
Acqua Industriale	Lavaggio piazzali e corpi tecnici, preparazione reagenti, flussaggio pompe	m³	12.824	18.329	23.174
TOTALE		m³	12.921	18.452	23.273

FONTE: LETTURA CONTATORI

Si riporta di seguito l'indicatore "Efficienza di utilizzo della risorsa idrica", calcolato sui consumi di acqua industriale per rifiuti trattati (rifiuti pompabili NP).

Figura 36 Andamento dell'indicatore "Efficienza di utilizzo della risorsa idrica"

L'indicatore presenta un andamento pressoché stazionario, indice di una efficiente gestione della risorsa idrica.

^{*}Dato stimato

12.3 SCARICHI IDRICI

L'UTILIZZO DI MARKERS

Considerato che l'obiettivo dei monitoraggi ambientali è quello di rilevare tempestivamente situazioni di inquinamento riconducibili ad impianti di smaltimento rifiuti, tra i diversi parametri analizzati, si sono scelti quelli maggiormente rappresentativi delle attività svolte, i cosiddetti markers.

Si tratta di parametri specifici per l'attività di gestione rifiuti particolarmente indicati a segnalare eventuali situazioni di interferenza tra le attività degli impianti e la qualità dell'ambiente circostante.

Nella fattispecie i parametri utilizzati sono: Domanda Chimica di Ossigeno (COD) e Azoto Ammoniacale. Nel presente documento si farà ricorso ai markers nei paragrafi dedicati agli scarichi idrici (Paragrafo 12.3.2) e al suolo e sottosuolo (Paragrafo 12.4).

12.3.1 Scarichi in fognatura

Il Comparto è collegato tramite tubazione diretta (linee di scarico S2, S3, S4) all'impianto chimico-fisicobiologico di trattamento delle acque reflue industriali (Trattamento Acque di Scarico - TAS) del "Centro Ecologico Baiona" (reg. EMAS n. IT-001324).

Nel dettaglio, le acque reflue in uscita dal trattamento chimico-fisico di rifiuti liquidi svolto nell'impianto TCF, raccolte in una vasca di accumulo finale (VF), vengono destinate allo scarico all'impianto TAS del Centro Ecologico Baiona tramite condotte dedicate linea S3 e/o linea S2 (flusso S3/a – S2/a), sulle quali sono installati dei punti di prelievo provvisti di campionatore automatico e misuratore di portata.

Tale scarico idrico si configura come "flusso interno" tra diverse sezioni di impianti aventi la medesima società titolare (Herambiente) ed è gestito come corrente di acque reflue.

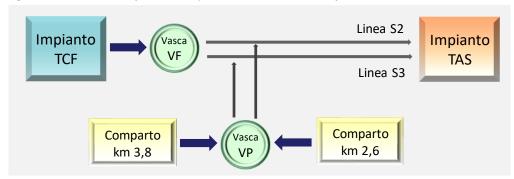
A valle dei punti di prelievo è convogliato lo scarico della sezione di accumulo (vasca VP), ubicata all'interno delle aree di pertinenza dell'impianto TCF, costituito dai flussi di acque reflue provenienti dai Comparti km 2,6 e 3,8 che già presentano caratteristiche qualitative conformi per il trattamento nell'impianto TAS e che pertanto non necessitano di un trattamento preliminare nell'impianto TCF.

In particolare, ad oggi i flussi di acque reflue rilanciati via condotta direttamente al TAS, sono i seguenti:

- percolati della discarica esaurita e acque meteoriche provenienti dal Comparto sito al km 3,8;
- acque meteoriche del Comparto in oggetto.

Venivano inoltre rilanciati al TAS anche le acque meteoriche di dilavamento delle aree di pertinenza degli impianti CDR-IRE e zone di lavorazione dell'impianto TM. Con la cessazione dell'attività del termovalorizzatore IRE e successivamente dell'impianto TM, previa richiesta nel corso del 2022 di modifica non sostanziale di AIA, si è dato corso alla modifica della rete fognaria che ha previsto da gennaio 2023³³ l'immissione delle acque sopracitate nello scolo Tomba tramite l'esistente punto di scarico SG. Con la riattivazione dell'impianto TM per l'emergenza alluvione è stata temporaneamente ripristinata³⁴ la configurazione antecedente la comunicazione di modifica di AIA con rilancio delle acque raccolte dai piazzali di lavorazione dell'impianto TM verso l'impianto TAS del Centro Ecologico Baiona fino al termine dell'emergenza³⁵.

In ottemperanza all'autorizzazione vigente, sono effettuate misurazioni ed autocontrolli periodici, con cadenza mensile, per lo scarico della vasca VF al TAS, e cadenza quadrimestrale per le correnti in ingresso alla vasca VP. Le acque meteoriche di dilavamento delle superfici della discarica per rifiuti non pericolosi con copertura provvisoria/definitiva (1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9° e 10° settore) sono invece conferite, previo accumulo in vasche dedicate, direttamente all'impianto TAS del Centro Ecologico Baiona tramite le linee dedicate S4 e S2 (flusso di scarico S2/b).


La significatività dell'aspetto ambientale è da riferirsi all'impianto di trattamento chimico-fisico per il superamento della soglia PRTR.

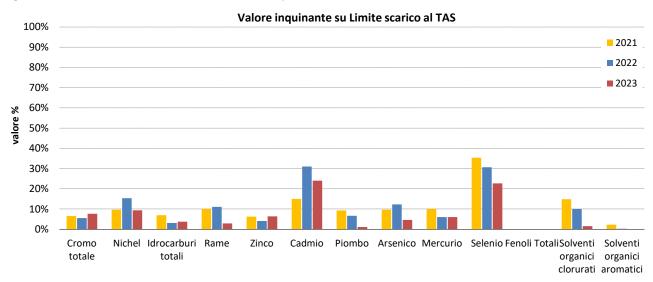
³³ Comunicazione HA prot. 0000960/23 del 20/01/2023

³⁴ Comunicazione HA prot. 0007040/23 del 25/05/2023.

³⁵ Comunicazione HA prot. 0002668/24 del 23/02/2024.

Figura 37 Schema sezione finale dell'impianto trattamento chimico-fisico

Di seguito si riportano, per il triennio di riferimento, gli esiti delle analisi svolte mensilmente sul refluo in uscita dall'impianto chimico-fisico ed inviato all'impianto TAS mediante le linee S2/S3.


Tabella 16 Concentrazione media allo scarico verso Impianto di Trattamento Acque di Scarico TAS (S2/S3) – Media annua

PARAMETRO	U.M.	LIMITE di AIA	2021	2022	2023
Cromo totale	mg/l	4	0,26	0,22	0,31
Nichel	mg/l	4	0,38	0,61	0,37
Idrocarburi totali	mg/l	150	10,35	4,58	5,54
Rame	mg/l	1,5	0,15	0,166	0,04
Zinco	mg/l	8	0,50	0,33	0,51
Cadmio	mg/l	0,02	0,003	0,006	0,005
Piombo	mg/l	0,3	0,028	0,02	0,003
Arsenico	mg/l	0,5	0,048	0,061	0,023
Mercurio	mg/l	0,005	0,0005	0,0003	0,0003
Selenio	mg/l	0,03	0,011	0,0092	0,0068
Fenoli Totali	mg/l	100	0,042	0,05	0,05
Solventi organici clorurati	mg/l	2	0,30	0,20	0,03
Solventi organici aromatici	mg/l	150	3,35	0,34	0,17
Azoto Totale (come TKN)*	mg/l	-	1.002	1.195	968
COD*	mg/l	-	7.406	6.219	4.760

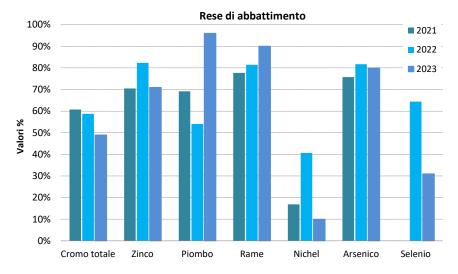
^{*}Controlli di processo effettuati con frequenza bisettimanale FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Nella seguente figura si riporta l'andamento temporale dell'indicatore "Posizionamento rispetto al limite" dal quale si evince il pieno rispetto dei limiti per tutti i parametri dello scarico con valori abbondantemente inferiori alla soglia autorizzata e, per il 2023, concentrazioni pressoché in linea con il trend storico.

Figura 38 Andamento dell'indicatore "Posizionamento rispetto al limite" – Scarico verso il TAS

Di seguito si riportano le rese di abbattimento dell'impianto chimico-fisico per il triennio considerato, calcolate sul rapporto percentuale tra le quantità di inquinanti in ingresso all'impianto di trattamento e le quantità presenti in uscita. Tali valori sono indice dell'efficienza di abbattimento dell'impianto.

Tabella 17 Rese di abbattimento TCF


PARAMETRO	2021	2022	2023
Cromo totale	61%	59%	49%
Zinco	70%	82%	71%
Piombo	69%	54%	96%
Rame	78%	81%	90%
Nichel	17%	41%	10%
Arsenico	76%	82%	80%
Selenio	_*	64%	31%

^{*} Risulterebbe un'efficienza di abbattimento negativa per effetto delle concentrazioni prossime ai limiti di quantificazione del metodo sia in ingresso sia in uscita dall'impianto.

FONTE: REPORT INTERNI

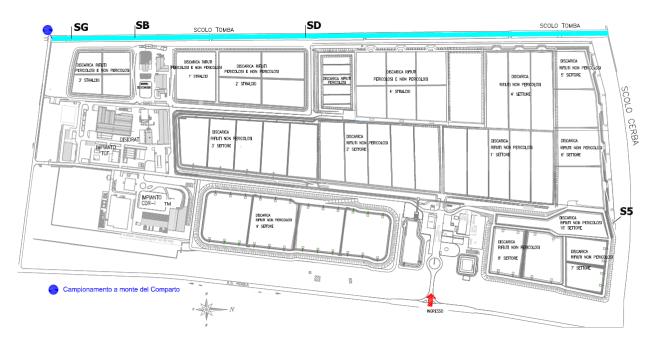

Come si evince dalla tabella sopra riportata e dalla rappresentazione grafica (Figura 39), i valori delle rese di abbattimento presentano un andamento variabile nel triennio in quanto le performance del trattamento sono strettamente correlate alle caratteristiche del rifiuto in ingresso. La riduzione delle rese di abbattimento è anche per effetto di una riduzione delle concentrazioni degli inquinanti sui flussi in ingresso all'impianto.

Figura 39 Andamento dell'indicatore "Efficienza di abbattimento" (TCF)

12.3.2 Scarico in acque superficiali di comparto

Figura 40 Planimetria degli scarichi in acque superficiali

Gli scarichi in acque superficiali per gli impianti di riferimento sono costituiti da acque meteoriche provenienti da:

- piazzali e viabilità delle aree di pertinenza degli impianti TM/IRE;
- ▶ coperture delle infrastrutture e parte della viabilità, piazzali e aree verdi dell'impianto Disidrat;
- settori di discarica esauriti ed in sicurezza;
- viabilità interna ed aree verdi del comparto.

I punti di scarico delle acque meteoriche (Figura 40) sono posizionati lungo lo Scolo Tomba (SB, SD, SG) e lo scolo Cerba (S5), canali artificiali che lambiscono i confini del sito e gestiti dal Consorzio di Bonifica della Romagna Centrale.

Le responsabilità degli impianti ubicati nel sito rispetto ad ogni punto di scarico sono ripartite secondo il concetto di maggior incidenza dell'impianto e sono definite nelle rispettive autorizzazioni:

lo scarico S5 risulta di competenza della discarica per rifiuti non pericolosi, al quale sono inviate le sole acque meteoriche di dilavamento delle pareti esterne degli argini perimetrali del 7°, 8° e 10° settore;

- lo scarico SD è di competenza della discarica pericolosi, al quale sono inviate le relative acque meteoriche di dilavamento non più oggetto di monitoraggio³⁶;
- lo scarico SG è costituito da due punti di scarico parziali SG/a e SG/b di competenza rispettivamente dell'impianto di termovalorizzazione/TM, non più oggetto di monitoraggio dal 2023 in seguito all'attuazione della modifica della rete fognaria interna, e del Disidrat;
- ▶ lo scarico SB, realizzato nel corso del 2022³⁷, convoglia le acque meteoriche di dilavamento della discarica 3° stralcio direttamente nello scolo Tomba, non soggetto a monitoraggio (raggiungendo l'obiettivo definito si veda § 14).

Il monitoraggio degli scarichi, previsto attualmente per S5 avviene secondo le frequenze previste nel piano di monitoraggio dell'autorizzazione vigente per la discarica NP, con la determinazione di un profilo analitico basato sui principali parametri elencati dalla normativa in materia. Si riportano nella seguente tabella, per il triennio di riferimento, i valori dei markers rilevati sugli scarichi, espressi come valore medio, e sullo Scolo Tomba, nel punto a monte dell'intero Comparto e quindi, a tutti gli effetti, indicatore di una situazione imperturbata. A seguire la rappresentazione grafica degli andamenti nel triennio.

Tabella 18 Qualità Scolo Tomba e media scarichi (SD-SG-S5*) – Media annua

				2021		2022		2023	
PARAMETRO	U.M.	Limite di legge	Scarico	Qualità acque superficiali a monte del comparto	Scarico	Qualità acque superficiali a monte del comparto	Scarico	Qualità acque superficiali a monte del comparto	
COD	mg/l	160	40,17	47,50	33,25	38,50	47,0	46,75	
Azoto Ammoniacale	mg/l	15	<1	2,7	<1	2,1	<1	1,5	

^{*} Il punto di scarico SD non viene più considerato nel calcolo a partire dal 2022 mentre il punto SG a partire dal 2023. FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Figura 41 Confronto Azoto ammoniacale Scolo Tomba e media scarichi (S5-SD-SG) – Media annua

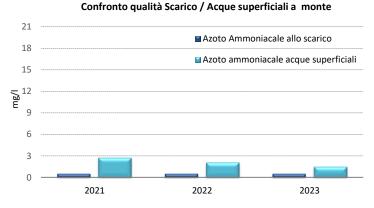
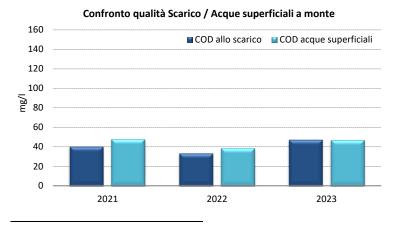



Figura 42 Confronto COD Scolo Tomba e media scarichi (S5-SD-SG) – Media annua

rilievi effettuati di riferimento triennio evidenziano per entrambi i markers valori concentrazione allo scarico in valore assoluto modesti. Inoltre. per l'azoto ammoniacale si evincono delle superficiali nel punto a monte più alti dei valori allo scarico a dimostrare l'assenza di una potenziale interferenza della discarica sulla qualità delle acque superficiali.

³⁶ DET-AMB-2021-5180 del 18/10/2021 - Aggiornamento AIA per Modifica Non Sostanziale.

³⁷ Comunicazione di fine lavori Prot. HA 0005821 del 28/04/2022.

Nel triennio di riferimento i valori di concentrazione dei markers sullo scarico risultano nel complesso in linea con il trend storico. Alla luce di tali andamenti è ragionevole presupporre come le attività svolte nel sito, oggetto della presente dichiarazione ambientale, non determinino interferenze negative sulla qualità delle acque superficiali locali.

IL PROGETTO SULLE ACQUE METEORICHE

L'intero sito è stato interessato da un progetto di gestione delle acque reflue industriali e meteoriche che è andato a modificare sostanzialmente l'assetto organizzativo relativo alla gestione dei flussi delle acque, e quindi degli scarichi, di competenza del Comparto. Il progetto, mirato alla massima tutela dei corpi idrici ricettori, ha previsto che le acque reflue industriali, meteoriche e di dilavamento del Comparto fossero raccolte da una rete fognaria complessa e convogliate a trattamento negli impianti del Centro Ecologico di via Baiona di Herambiente mediante tre condotte interrate (linea S2, S3 e S4). Nell'ottica di gestione integrata delle problematiche ambientali il progetto è stato condiviso tra le diverse gestioni del sito ed ha superato positivamente la procedura di screening con Del. G.P. n. 101 del 22/07/07. Il progetto è ad oggi completato, nel corso del 2022 sono infatti terminati i lavori relativi all'ultima fase, ovvero la realizzazione della nuova vasca di accumulo (VA1) che raccoglie le acque reflue di dilavamento delle discariche 1°/2° stralcio e 4° stralcio. L'acqua accumulata all'interno della vasca VA1 viene inviata a trattamento presso l'impianto TAS di Via Baiona coerentemente con quanto già realizzato per le discariche per rifiuti non pericolosi.

12.4 SUOLO E SOTTOSUOLO

Lo stato delle acque di falda attorno al complesso impiantistico è monitorato tramite il controllo delle acque prelevate dai pozzi piezometrici della rete di monitoraggio di Comparto ubicati sia internamente che esternamente al comparto stesso (Figura 43).

Figura 43 Punti di monitoraggio delle acque sotterranee interni ed esterni al sito

L'analisi delle misure rilevate periodicamente sulla rete di controllo piezometrica interna al comparto induce ad una serie di considerazioni³⁸:

- ▶ il livello medio freatico si trova sempre a scarsa profondità dal piano di campagna, circa 2/2,20 m.;
- in genere l'alimentazione naturale della falda procede da sud-est verso nord-ovest e lo scarico della stessa è rappresentato dagli scoli Tomba e Cerba il cui livello idrico è regolato dall'omonima idrovora posta a

³⁸ Relazioni annuali sulle caratteristiche chimico-fisiche dell'acquifero freatico.

qualche km a nord-est dell'area oggetto di studio. Stagionalmente (primavera/estate) si osservano fenomeni di inversione della direzione della falda in cui l'alimentazione è costituita dallo Scolo Tomba e Cerba e la direzione di moto procede da Ovest verso Est. Tale situazione si può verificare qualora la rete di canali consorziali da drenante diventi alimentante in quanto rifornita di acque provenienti dal Canale Emiliano Romagnolo destinate a soddisfare le esigenze idriche del comparto agricolo circostante;

• esistono rapporti certi di interconnessione fra corpi idrici di superficie (Piallassa Baiona, Scolo Cerba e Tomba) e la composizione chimica della falda freatica.

Per questione di sintesi le valutazioni sulle acque sotterranee faranno ricorso ai markers, per i quali gli atti autorizzatori hanno identificato un livello di guardia³⁹. Si precisa che la rete di monitoraggio (Figura 43) comprende sia piezometri interni al Comparto, sia piezometri (da N2 a N8) localizzati all'esterno del sito impiantistico, rispettivamente a valle ed a monte dello stesso e posti a distanza progressiva dal Comparto.

Di seguito si riportano i monitoraggi effettuati nella rete interna del complesso impiantistico in oggetto con frequenza trimestrale, e successivi ricampionamenti previsti dal piano di azione della vigente autorizzazione, per il triennio di riferimento.

Tabella 19 Concentrazione di COD rilevata nella rete interna dei piezometri – Media annua [mg/l]

Data	P1bis	P2	Р3	P4	P5	Р6	P7	Р8	P9bis	P10	N9	P14	P15	P16
2021	39,3	146	184,5	190,5	307,9	132,7	364,3	305,9	130,5	234,8	176,3	336,8	286,6	98,5
2022	20,8	132,0	169,5	164,0	217,5	68,5	343,8	308,4	121,8	204,3	224,5	278,6	237,8	49,3
2023	14,3	117,5	138,3	115,3	162,5	55,0	257,0	218,2	73,8	142,5	119,3	217,8	182,3	45,0
Livello di Guardia							30	00						

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Tabella 20 Concentrazione di Azoto ammoniacale rilevata nella rete interna dei piezometri – Media annua [mg/l]

Data	P1bis	P2	Р3	P4	P5	Р6	P7	Р8	P9bis	P10	N9	P14	P15	P16
2021	2,1	3,8	1,0	5,2	9,2	10,5	26,4	23,8	9,0	34,7	25,1	43,3	29,8	2,3
2022	1,0	3,6	1,1	1,1	5,3	2,7	27,0	25,2	7,6	32,9	24,4	39,1	24,8	0,4
2023	1,1	4,9	0,3	2,2	3,9	4,4	28,2	23,6	1,7	29,7	16,7	35,7	20,9	0,025
Livello di Guardia							2	5						

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Relativamente al parametro COD, si osserva nel triennio di riferimento un andamento variabile. Nel triennio di riferimento si sono registrati alcuni superamenti dei livelli di guardia; tuttavia, per alcuni piezometri è stato evidenziato come l'estremo inferiore dell'intervallo di confidenza (determinato come valore assoluto di concentrazione +/- valore di incertezza) risultava essere inferiore al livello di guardia.

In particolare, nel 2023 i superamenti di COD non sono mai stati accompagnati da un corrispondente innalzamento né del valore del BOD₅ né dei composti azotati e non si sono manifestati con alcuna caratteristica di trend riconducibile a contaminazione di percolato. Considerando i valori di BOD₅ registrati nelle campagne trimestrali nel corso del 2023, che risultano sempre al di sotto della soglia critica di un ordine di grandezza, e la forma delle isoplete relative ai valori di COD si può ragionevolmente escludere un pericolo di contaminazione delle acque sotterranee da parte degli impianti insediati in Comparto.

³⁹ I livelli di guardia individuati sono stati concordati con le Autorità di controllo. Tali valori, per alcuni parametri (es. ferro e manganese), sono più elevati rispetto alla normativa di riferimento in quanto tengono conto del concetto di fondo naturale.

Anche l'Azoto ammoniacale registra concentrazioni molto variabili e nel corso del triennio si sono registrati alcuni superamenti in diversi piezometri. Dal confronto complessivo con l'andamento delle concentrazioni rilevate negli anni precedenti, del tutto paragonabili, si può affermare ragionevolmente che non sono in atto tendenze sui singoli piezometri di controllo che riconducano ad evidenze di uscite di percolato da alcun impianto insediato nel Comparto, per contro non è possibile escludere che le ragioni di queste concentrazioni variabili e localmente anche elevate di Azoto ammoniacale siano da ricondurre a specifiche condizioni geologico-sedimentarie dei terreni su cui insiste il Comparto.

Inoltre, gli altri indicatori di contaminazione organica (BOD₅, Azoto nitrico e nitroso) non evidenziano valori anomali che possano confermare una tendenza particolare nonostante i valori di Azoto ammoniacale relativamente alti accertati nel corso del triennio di riferimento.

In ogni caso, ogni sforamento del livello di guardia è regolarmente comunicato alle Autorità di controllo e gestito secondo quanto stabilito dall'autorizzazione vigente: comunicazione alle Autorità competenti dei superamenti registrati, due ricampionamenti ed analisi dell'acqua di falda solo sul punto che ha evidenziato l'anomalia, in caso di riconferma del superamento elaborazione di un piano di azioni da trasmettere all'Autorità di Controllo.

In merito agli altri parametri indagati, si segnala che nel corso del triennio di riferimento si sono riscontrati, nella rete piezometrica del Comparto, alcuni superamenti dei livelli di guardia relativamente ai metalli pesanti gestiti, conformemente all'atto autorizzativo, secondo le modalità sopra menzionate.

A seguito di ulteriori approfondimenti sullo stato idrochimico della falda, l'Autorità competente ha comunicato⁴⁰ l'attivazione del procedimento amministrativo ai sensi dell'art. 244 del D.Lgs n. 152/2006 e s.m.i. finalizzato alla verifica dell'eventuale condizione di potenziale contaminazione del sito per la matrice acque sotterranee, richiedendo la predisposizione di una Relazione tecnica di approfondimento del contesto idrogeochimico. Herambiente ha pertanto trasmesso, nei tempi richiesti, la relazione tecnica⁴¹. Le valutazioni svolte, in particolare sul contesto idrogeologico, chimico e isotopico, hanno permesso di dimostrare che non vi sono fenomeni di impatto da percolato in atto sulla matrice acque sotterranee, né diffusi, né localizzati. L'analisi dei dati disponibili ha permesso inoltre di accertare che il contesto geochimico locale si caratterizza per alcuni fenomeni naturali che influiscono sulla qualità delle acque sotterranee e che giustificano elevate concentrazioni di diversi parametri chimici. Si è quindi in attesa delle relative valutazioni da parte degli Enti.

L'aspetto ambientale si valuta pertanto significativo anche per le condizioni di emergenza, per la possibile fessurazione del telo di impermeabilizzazione delle discariche e delle vasche/condotte adibite al percolato.

12.5 EMISSIONI IN ATMOSFERA

La trattazione che segue distingue le emissioni del sito in convogliate, diffuse ed emissioni di gas serra.

Le prime si differenziano dalle seconde per il fatto di essere immesse nell'ambiente esterno tramite l'ausilio di un sistema di convogliamento. Le emissioni di gas serra, invece, comprendono le emissioni di composti noti per il loro contributo al fenomeno del riscaldamento globale (anidride carbonica, metano, ecc.).

Alla valutazione dei dati espressi in termini di "flussi di massa" (massa di sostanza inquinante emessa per unità di tempo) seguirà il confronto con le rispettive soglie PRTR⁴².

Nel caso specifico, la significatività dell'aspetto è da riferirsi, per la discarica per rifiuti non pericolosi, sia alle emissioni diffuse in condizioni di emergenza che alle emissioni convogliate dell'impianto di recupero energetico, per il superamento del livello di guardia interno relativo agli ossidi di azoto.

12.5.1 Emissioni convogliate

Impianto TM

⁴⁰ Prot. HA 0000450/22 del 12/01/2022.

⁴¹ Comunicazione HA Prot. n. 3488 del 11/03/2022.

⁴² Soglia PRTR – Valore soglia di cui all'Allegato II del Regolamento (CE) 166/2006. È un riferimento utilizzato esclusivamente ai fini della Dichiarazione PRTR: qualora il valore del flusso di massa dell'anno precedente sia superiore alla propria soglia, il gestore provvede ad effettuare la dichiarazione.

Per l'Impianto TM era attiva l'emissione convogliata E3 che riceveva esclusivamente l'aria aspirata dalla fossa di stoccaggio rifiuti in ingresso unitamente a quella proveniente dall'adiacente edificio di lavorazione. Si trattava di un'emissione dotata di sistema di depurazione costituito da impianto di depolverazione (filtro a tessuto). Nel 2021 è stata condotta una sola analisi in quanto l'impianto è stato attivo fino al 30 giugno 2021 che ha evidenziato un valore di polveri abbondantemente inferiore al limite prescritto dall'autorizzazione.

Tabella 21 Emissioni dell'impianto TM (E3) – Analisi 2021

PARAMETRO	U.M.	LIMITE AIA	2021
Polveri	mg/Nm³	20	0,38

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Discariche

Le uniche emissioni convogliate riguardano la discarica per rifiuti non pericolosi e provengono sia dagli impianti di recupero energetico che dalle torce di combustione utilizzate per la termocombustione del biogas captato dai settori 1°, 2° e 3° ("Ravenna 1") e, in sole condizioni di emergenza, dai restanti settori della discarica.

Il sistema di recupero energetico è attualmente costituito da quattro motori endotermici: "Ravenna 2", "Ravenna 4b" e "Ravenna 4a". I motori sono dotati di sistema CL.AIR, un sistema di abbattimento specifico per il monossido di carbonio basato sulla post-combustione per innalzamento della temperatura fino a valori di circa 740 - 780 °C con conseguente ossidazione dei composti a CO_2 e H_2O .

L'atto autorizzativo prevede un monitoraggio con frequenza annuale delle emissioni convogliate dei motori (E10, E11, E8, E7), gli esiti dei rilievi analitici effettuati per il triennio di riferimento sono riportati nelle tabelle seguenti dai quali si evince la piena conformità di tutti i valori ai rispettivi limiti di legge.

Tabella 22 Concentrazione punto emissione E10 – Profilo annuale (Ravenna 2)

Parametro	U.M.	Limiti AIA	2021	2022	2023
Polveri	mg/Nm³	10	<0,15	0,16	1,18
Ossidi di azoto	mg/Nm³	450	344	317	371
Monossido di carbonio	mg/Nm³	450	110	122	114
Acido cloridrico	mg/Nm³	5	<0,5	<0,5	0,56
Acido fluoridrico	mg/Nm ³	2	<0,5	<0,5	<0,23
Carbonio organico totale*	mg/Nm³	100	7,11	2,09	12,1

^{*} Come NMHC

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Tabella 23 Concentrazione punto emissione E11 – Profilo annuale (Ravenna 3)

Parametro	U.M.	Limiti AIA	2021	2022	2023
Polveri	mg/Nm³	10	<0,14	<0,11	1,03
Ossidi di azoto	mg/Nm ³	450	410	315	370
Monossido di carbonio	mg/Nm³	450	167	134	88
Acido cloridrico	mg/Nm³	5	<0,5	<0,5	<0,54
Acido fluoridrico	mg/Nm³	2	<0,5	<0,5	<0,28
Carbonio organico totale*	mg/Nm³	100	10,1	1,39	7,6

^{*} Come NMHC

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

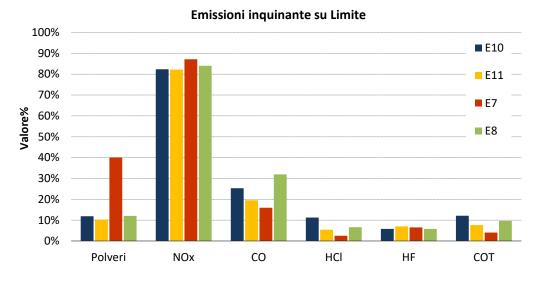
Tabella 24 Concentrazione punto emissione E8 – Profilo annuale (Ravenna 4b)

Parametro	U.M.	Limiti AIA	2021	2022	2023
Polveri	mg/Nm³	10	<0,1	0,24	1,20
Ossidi di azoto	mg/Nm ³	450	382	246	378
Monossido di carbonio	mg/Nm ³	500	84,8	115	160
Acido cloridrico	mg/Nm ³	10	<0,5	<0,5	0,66
Acido fluoridrico	mg/Nm ³	2	<0,5	<0,5	<0,23
Carbonio organico totale*	mg/Nm ³	150	0,69	3,03	14,5

^{*} Come NMHC

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Tabella 25 Concentrazione punto emissione E7 –Profilo annuale (Ravenna 4a)


Parametro	U.M.	Limiti AIA	2021	2022	2023
Polveri	mg/Nm³	10	0,17	0,12	4,01
Ossidi di azoto	mg/Nm³	450	387	246	392
Monossido di carbonio	mg/Nm³	500	73,4	67,3	79,8
Acido cloridrico	mg/Nm³	10	<0,5	<0,5	<0,51
Acido fluoridrico	mg/Nm³	2	<0,5	<0,5	<0,26
Carbonio organico totale*	mg/Nm³	150	3,46	3,91	6

^{*} Come NMHC

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Di seguito si riporta l'andamento dell'indicatore "Posizionamento rispetto al limite" per le quattro emissioni, calcolato come valore rilevato nel 2023 sul limite autorizzato.

Figura 44 Andamento temporale dell'indicatore "Posizionamento rispetto al Limite" (E10, E11, E7, E8)

Si evince il pieno rispetto dei limiti autorizzativi per tutti i parametri monitorati.

Trattamento Chimico-fisico

L'impianto è dotato di un sistema di abbattimento delle emissioni, Figura 45 Sistema di trattamento delle afferenti al punto E1, provenienti dalle aree di stoccaggio e trattamento dell'impianto, mediante un sistema di aspirazione forzato. Gli effluenti gassosi sono sottoposti a trattamento tramite passaggio in un filtro costituito da minerali naturali adsorbenti (zeolite).

Tutte le vasche delle sezioni di trattamento (TCFA, TCF 1° stadio, TCF 2° stadio, trattamento delle emulsioni oleose) sono ubicate all'interno del capannone adibito al trattamento chimico-fisico e collegate al sistema di aspirazione e contenimento delle emissioni odorigene sopracitato, cui sono convogliati anche gli sfiati di tutte le vasche di stoccaggio dei rifiuti in ingresso che sono coperte e mantenute in aspirazione.

Il sistema di abbattimento è sottoposto regolarmente a manutenzione, come prescritto da atto autorizzativo.

Si ricorda come nella domanda di Riesame AIA presentata a febbraio 2020 (si veda § 9.4 "Progetti in corso" e il Programma ambientale § 14) è stata proposta la sostituzione del sistema di abbattimento a zeolite delle emissioni atmosferiche a servizio del punto emissione convogliata E1 con un nuovo sistema costituito da scrubber ad umido a doppio stadio seguito da filtro a carboni attivi.

Impianto Disidrat

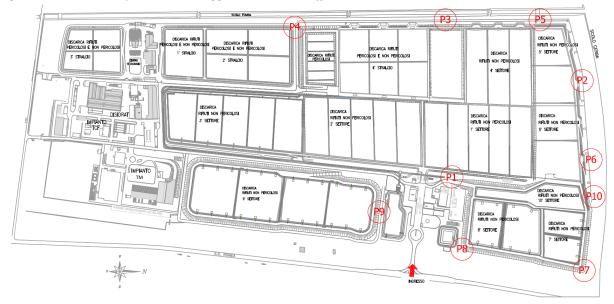
L'impianto è dotato di capannoni chiusi all'interno dei quali sono alloggiate le vasche di stoccaggio dei rifiuti potenzialmente odorigeni e dove vengono effettuate le operazioni di trattamento (filtropressatura e inertizzazione). I capannoni sono inoltre mantenuti in depressione mediante sistemi di aspirazione con successivo convogliamento dell'aria esausta a idonei sistemi di abbattimento costituiti da scrubber.

Nello specifico sono presenti tre punti di emissione convogliata (E2, E3, E4) corrispondenti ai tre scrubber deputati al trattamento di:

- > aria aspirata dal capannone fanghi inertizzati, la quale è inviata al sistema di trattamento costituito da un ciclone per l'abbattimento delle polveri grossolane seguito da uno scrubber verticale (emissione E2). Le polveri raccolte nel ciclone sono successivamente convogliate alla sezione di inertizzazione dell'impianto o ai silos di stoccaggio;
- > aria aspirata dalla sezione di condizionamento/filtropressatura, che è inviata a uno scrubber verticale (emissione E3);
- aria aspirata dal capannone di stoccaggio dei fanghi pompabili pericolosi, che è convogliata a un sistema di trattamento costituito da due scrubber orizzontali operanti in parallelo (emissione E4).

In ottemperanza a quanto previsto dall'autorizzazione, sui suddetti punti di emissione vengono effettuati monitoraggi annuali (ammoniaca e acido solfidrico) che hanno evidenziato, nel periodo in esame, il pieno rispetto dei limiti indicati per tutti e tre i punti di emissione (E2, E3, E4).

Al fine di contenere le emissioni di polveri è presente un sistema di nebulizzazione sia nelle aree dedicate alla viabilità che in alcune aree di lavorazione.


12.5.2 Emissioni diffuse

All'interno del sito si sono individuate le sorgenti di emissioni diffuse, continuative e non, odorigene e gassose o di tipo polverulento, principalmente riconducibili ai mezzi che trasportano rifiuti e nel dettaglio:

- discarica non pericolosi: emissioni di biogas dal corpo discarica;
- impianti DISIDRAT/TCF: stoccaggi reagenti, vasche e corpi tecnici adibiti a stoccaggio e trattamento rifiuti liquidi, vasca di rilancio finale.

Il controllo della qualità dell'aria all'interno del sito avviene mediante campagne di monitoraggio mensili presso i punti di campionamento individuati nella successiva planimetria.

Figura 46 Planimetria dei punti di monitoraggio delle emissioni diffuse

Per questioni di sintesi si riporta in Tabella 26 solo parte del profilo analitico effettuato con frequenza mensile con i relativi livelli di guardia. La rosa di parametri selezionati si compone di inquinanti rilevanti per pericolosità e per caratteristiche odorigene. Attualmente il monitoraggio è effettuato su dieci punti di campionamento. I dati si presentano notevolmente inferiori ai rispettivi valori limite di riferimento.

Tabella 26 Rilievi sui principali markers – Media annua

Parametro	U.M.	Limiti di guardia	2021	2022	2023
Benzene	mg/Nm³	0,5	0,0009	0,0007	0,0005
Cloruro di Vinile	mg/Nm³	0,1	0,0001	0,0001	0,0001
Stirene	mg/Nm³	0,1	0,0010	0,0022	0,0012
Mercaptani	mg/Nm³	0,1	0,0006	0,0005	0,0005

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

12.5.3 Emissioni ad effetto serra

Il fenomeno dell'effetto serra è dovuto all'innalzamento della concentrazione atmosferica dei cosiddetti gas serra (anidride carbonica, metano, protossido di azoto, ecc.) ovvero gas in grado di assorbire la radiazione infrarossa provocando, conseguentemente, un riscaldamento globale.

Per contrastare il fenomeno, nel 1997 è stato varato il Protocollo di Kyoto, un accordo internazionale di natura volontaria entrato in vigore nel 2005 che impegnava gli Stati firmatari ad una riduzione quantitativa delle proprie emissioni dei gas climalteranti rispetto ai livelli del 1990. Successivamente, con l'accordo Doha, il Protocollo di Kyoto è stato esteso al 2020 ("Kyoto2") anziché alla fine del 2012. Il periodo post-2020 è regolato dall'Accordo di Parigi sul clima, raggiunto il 12 dicembre 2015 alla Conferenza annuale dell'Onu sul riscaldamento globale (Cop 21) ed entrato in vigore il 4 novembre 2016, che definisce quale obiettivo di lungo termine il contenimento dell'aumento della temperatura. Agli accordi internazionali, sono seguite le politiche e le misure attuate dall'Unione Europea al fine di dare attuazione agli impegni assunti per la riduzione delle emissioni di gas ad effetto serra.

Discarica per rifiuti non pericolosi

Nella discarica per rifiuti non pericolosi si effettua la stima dei quantitativi di anidride carbonica e metano rilasciati nell'ambiente. Va precisato che le emissioni di CO₂ di origine biogenica sono considerate ad impatto

zero in termini di gas serra, poiché rientrano nel naturale ciclo del carbonio. Il calcolo sfrutta un modello matematico basato sui seguenti dati di partenza:

- rifiuti conferiti in discarica (t/a) a partire dall'anno di inizio dei conferimenti;
- composizione merceologica delle diverse tipologie di rifiuti conferiti negli anni (percentuali in peso di plastica, cellulosici, organico, inerti, metalli ecc.) e analisi elementare della composizione di ogni singola frazione;
- biogas captato (Nm³/anno) dall'anno di inizio attività;
- biodegradabilità delle singole frazioni merceologiche (%);
- velocità di biodegradazione delle singole frazioni merceologiche (%).

Il dato in uscita è utilizzato ai fini dell'aggiornamento della Dichiarazione PRTR. Va precisato che relativamente alle discariche, soprattutto se di certe dimensioni, la soglia PRTR individuata per il metano, pari a 100 tonnellate/anno, implica, di norma, un superamento e la conseguente dichiarazione.

Si puntualizza che la stima sul metano dichiarato è effettuata sul solo contributo delle emissioni diffuse di biogas, mentre il valore di anidride carbonica dichiarato tiene conto della somma dei contributi provenienti dalle emissioni convogliate e dalle emissioni diffuse.

L'assunzione di partenza utilizzata per la stima delle emissioni da dichiarare è che il biogas emesso coincida con la differenza tra quello teorico e quello captato secondo la seguente equazione:

biogas teorico – biogas captato = biogas emesso (emissione diffusa)

In Tabella 27 si riportano i dati della Dichiarazione PRTR riferiti al periodo di esercizio 2023. I dati, come richiesto dalla normativa di riferimento, sono complessivi ovvero tengono conto sia della parte fossile che biogenica, ossia della quota parte di emissione attribuibile al normale ciclo del carbonio.

Tabella 27 Flussi di massa – Discarica per rifiuti non pericolosi

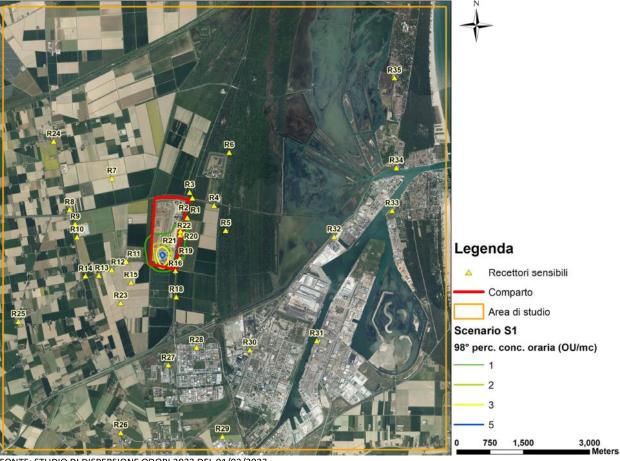
Parametro	U.M.	Soglia PRTR ⁴³	2023
Anidride carbonica	tonn/a	100.000	13.791
Metano	tonn/a	100	1.323

FONTE: DICHIARAZIONE PRTR

12.6 GENERAZIONE ODORI

Il problema delle emissioni odorigene è associato inevitabilmente alle operazioni di trattamento e smaltimento dei rifiuti, infatti, durante i vari trattamenti e nel momento stesso dello stoccaggio, si possono liberare nell'ambiente concentrazioni sensibili di sostanze organiche volatili o inorganiche responsabili del fenomeno odoroso. In particolare, la frazione di rifiuto che crea maggiori problemi è la frazione organica e/o putrescibili del rifiuto solido urbano; tuttavia, è utile sottolineare come, negli impianti di trattamento rifiuti, le molestie olfattive più sgradevoli siano originate da sostanze presenti in minima quantità, che non determinano pericoli per la salute delle popolazioni esposte.

Nel rispetto degli atti autorizzativi degli impianti insediati nel Comparto, è stato emesso nel 2023 l'aggiornamento della valutazione di impatto odorigeno riferita all'intero Comparto Km 2,6. Lo studio modellistico di dispersione degli odori è stato effettuato sempre mediante l'applicazione del modello matematico di dispersione delle emissioni in atmosfera (CALPUFF) al fine di simulare il trasporto e la diffusione di sostanze odorigene, utilizzando i dati meteorologici relativi all'anno 2022 e i risultati analitici di caratterizzazione delle sorgenti odorigene effettuati periodicamente sugli impianti fino al 2022.


⁴³ Soglia PRTR – Il valore soglia di cui all'Allegato II del Regolamento CE 166/2006 è utilizzato esclusivamente ai fini della Dichiarazione PRTR: qualora il valore del flusso di massa dell'anno precedente sia superiore alla propria soglia, il gestore provvede ad effettuare la dichiarazione.

In coerenza con le valutazioni elaborate negli anni precedenti, non essendo definiti a livello nazionale nessun riferimento a valori limite o criteri di tollerabilità dell'odore, nello studio sono stati presi a riferimento i criteri di accettabilità definiti dalla Linea Guida dell'Agenzia Ambientale del Regno Unito⁴⁴. Nello studio vengono inoltre considerati i valori di riferimento della Determina ARPAE Det-2018-426⁴⁵ anche se il Comparto in esame non ricade nelle casistiche indicate dalla Determina e, pertanto, non sia soggetto ai limiti di accettabilità del disturbo odorigeno definiti.

Lo studio ha previsto la simulazione di due scenari (S1-"medio" maggiormente realistico e S2-"massimo" altamente conservativo) su un'area assunta come dominio di raggio pari a 5 km dall'impianto in esame, all'interno della quale sono stati individuati i potenziali ricettori presenti (n. 35).

La mappa seguente si riferisce (Figura 47) alla distribuzione spaziale delle Unità Odorigene, espresse in O.U./m³ ed alla ubicazione dei ricettori nell'area oggetto di studio.

Figura 47 Distribuzione spaziale delle Unità Odorigene, espresse in OU/m^3 - 98-esimo percentile delle concentrazioni medie orarie ed ubicazione recettori – Scenario S1

FONTE: STUDIO DI DISPERSIONE ODORI 2022 DEL 01/03/2023

Dai risultati delle simulazioni di entrambi gli scenari è emerso che i recettori potenzialmente più esposti ed interessati dall'impatto odorigeno riconducibile alle attività svolte nel Comparto si trovino lungo la S.S. n.309 Romea. Tali recettori, nella maggior parte dei casi, non si configurano come "recettore residenziale". Lo scenario S1, maggiormente realistico, mostra come l'impatto odorigeno del comparto sia contenuto, rispetto ai criteri di accettabilità adottati: per nessun recettore infatti si verifica il superamento del criterio di accettabilità fissato dalle Linee UK (pari a 3 OU/m³), espresso come 98° percentile delle concentrazioni orarie su base annua, così come per nessun recettore si verifica il superamento dei criteri di accettabilità fissati dalla Determina ARPAE in termini di 98° percentile della concentrazione oraria di picco. Lo scenario S2 (altamente

⁴⁴ Il valore limite inglese pari a 3 OU/m³ riferito al 98° percentile delle concentrazioni medie orarie su base annua per impianti esistenti (UK-EA, 2011).

⁴⁵ Determina ARPAE DET-2018-426 del 18/05/2018 che definisce per recettori posti in aree residenziali e non residenziali i valori di accettabilità del disturbo olfattivo espressi come concentrazioni orarie di picco di odore al 98° percentile calcolate su base annuale.

conservativo) evidenzia come il potenziale impatto del Comparto possa interessare, sebbene in misura modesta e limitata, anche i recettori residenziali ubicati in direzione sud rispetto al sito. Concludendo, dall'indagine effettuata non emergano situazioni di particolare criticità sulla zona oggetto di studio, anzi, si evince un sostanziale miglioramento del clima odorigeno dell'area rispetto ai risultati dei precedenti studi (2016, 2018 e 2020) probabilmente anche a seguito della chiusura dell'impianto TM/CSS e dell'attuazione dell'intervento di mitigazione effettuato nel corso del 2019⁴⁶ sulla vasca dei fanghi pompabili non pericolosi dell'impianto Disidrat (per il dettaglio si rimanda alla precedente dichiarazione ambientale), condizioni che hanno permesso di minimizzare ulteriormente il disturbo olfattivo nell'area circostante.

La valutazione di significatività degli aspetti ambientali ha ritenuto l'aspetto, comunque, significativo in condizioni di emergenza per la discarica. Nell'ambito del sistema di gestione ambientale, inoltre, si tengono monitorati gli eventuali reclami pervenuti dall'esterno.

Figura 48 Foto lato sud compartimentazione vasca fanghi pompabili, vista dall'esterno - in cui si evidenzia la totale chiusura del lato, ad eccezione dell'apertura dei portoni durante le operazioni di carico e scarico [Fonte: "Relazione tecnica compartimentazione del 07/08/2019"]

12.7 CONSUMO DI RISORSE NATURALI E PRODOTTI CHIMICI

12.7.1 Impianto TM

Nell'Impianto TM non era previsto l'utilizzo di reagenti né altre materie prime.

12.7.2 Discariche

Nelle discariche le risorse naturali principalmente utilizzate sono costituite da materiali litoidi (ghiaia, sabbia, terreno argilloso ecc.) che assolvono alla funzione di realizzare i diversi interventi necessari alla conduzione della discarica: arginature, copertura giornaliera dei rifiuti, drenaggi per il biogas e per il percolato, viabilità interna.

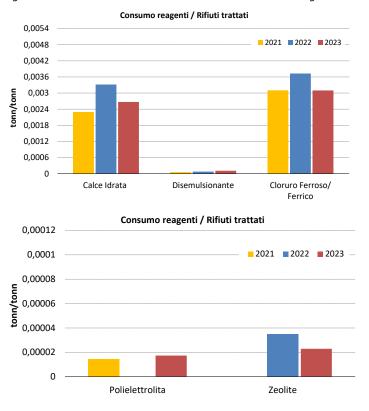
Al fine di ridurne il consumo, Herambiente ha effettuato diverse forme di recupero come l'utilizzo di rifiuti per la copertura giornaliera del fronte di scarico (es. utilizzo di F.O.S), nel periodo in cui la discarica era ancora attiva, l'impiego di macerie frantumate per la realizzazione della viabilità o l'uso di terra di risulta da processi agricoli per la copertura finale lasciando così un ruolo residuale all'impiego di risorse naturali. Con la cessazione dei conferimenti di rifiuti non si prevede più l'utilizzo di materiali per la copertura giornaliera dei rifiuti.

12.7.3 Trattamento Chimico-fisico

I processi svolti in impianto quali sedimentazione/flocculazione, rottura delle emulsioni oleose, correzioni di pH, richiedono l'aggiunta di sostanze chimiche con caratteristiche e quantità dipendenti sia dalla tipologia di refluo in ingresso sia dalle condizioni operative adottate.

⁴⁶ Comunicazione HA Prot. 9630 del 21/05/2019.

Lo stoccaggio di tali reagenti avviene in serbatoi, sacchi, fusti o cisterne; ogni area adibita allo stoccaggio è pavimentata e dotata di presidi ambientali come bacini di contenimento impermeabili o grigliati di raccolta per eventuali spandimenti. In Tabella 28 si elencano le tipologie di materie prime utilizzate nel triennio corredate dalle informazioni necessarie a conoscerne la funzione ed i quantitativi utilizzati. Va precisato che la modalità stessa di acquisizione del dato sui consumi, basato sugli ordini di acquisto dei reagenti, rende i quantitativi poco rappresentativi delle prestazioni dell'impianto. Nel corso del triennio si registra un andamento leggermente in crescita dei valori assoluti, determinato dai volumi trattati e dalle caratteristiche dei rifiuti in ingresso.


Tabella 28 Tipologia e quantitativi di materie prime acquistate – Impianto TCF

Reagente	Funzione	U.M.	2021	2022	2023
Calce Idrata (Idrossido di calcio)	Correzione PH e Coadiuvante della flocculazione	tonn	266,09	381,24	399,9
Disemulsionante	Rottura emulsioni	tonn	6,6	8,8	16,7
Polielettrolita	Coadiuvante della flocculazione	tonn	1,68	0	2,6
Zeolite	Adsorbenti odori	tonn	0	4	3
Cloruro Ferroso/Ferrico	Coagulante	tonn	359,86	428,39	464,26

FONTE: REPORT INTERNO SUI CONSUMI MATERIE PRIME

L'indicatore "Fattore di utilizzo reagenti" evidenzia i consumi specifici di reagenti per unità di rifiuto trattato.

Figura 49 Andamento dell'indicatore "Fattore di utilizzo dei reagenti"

L'andamento
dell'indicatore risulta
lievemente variabile nel
triennio. Il consumo del
reagente cloruro
ferroso/ferrico a parità di
rifiuto dipende anche dalla
variabile concentrazione
degli inquinanti nei
percolati in caso di scarsa
piovosità.

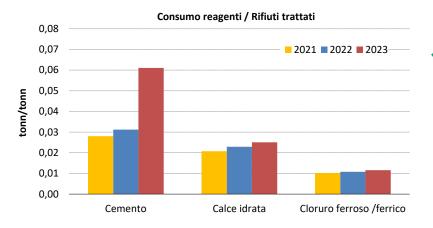
Al fine di ridurre il consumo di reagenti, si prevede, come riportato nel programma ambientale (§ 14), l'utilizzo di rifiuti da impiegare, in sostituzione/integrazione dei reagenti, direttamente nel processo come reattivi. I rifiuti, possedendo i medesimi requisiti tecnici delle materie prime di sintesi, consentono di prevenire, nel rispetto dell'ambiente, il consumo di risorse non pregiudicando la qualità dello scarico. Ad integrazione della suddetta ottimizzazione è previsto, come riportato nel programma ambientale (§ 14), anche un obiettivo di riduzione della calce idrata impiegata nel processo attraverso il recupero dell'eluato in uscita dalla filtropressa.

12.7.4 Impianto Disidrat

I trattamenti di coagulazione, precipitazione, flocculazione, nonché i trattamenti di disidratazione meccanica e inertizzazione dei rifiuti nell'impianto prevedono l'utilizzo di opportuni additivi liquidi ed in polvere. I reagenti in polvere sono stoccati in sili situati all'aperto e provvisti di idonei sistemi di contenimento degli sfiati polverulenti (filtri a maniche) mentre tutti i reagenti liquidi sono stoccati in serbatoi cilindrici su skid, dotati di bacino di contenimento.

Nella tabella seguente si riportano i principali reagenti chimici utilizzati nell'impianto, corredati dei quantitativi approvvigionati nel periodo di riferimento e delle informazioni relative al loro utilizzo. Va precisato che la modalità stessa di acquisizione del dato sui consumi, basato sugli ordini di acquisto dei reagenti, rende i quantitativi poco rappresentativi delle prestazioni dell'impianto.

Come visibile dalla tabella sottostante i consumi più significativi sono rappresentati dal reagente utilizzato con funzione di inertizzazione (cemento) e calce idrata utilizzata nel processo di filtropressatura che presentano quantitativi in crescita nel 2023 a seguito di un incremento dei rifiuti trattati nell'impianto.


Tabella 29 Tipologia e quantitativi di materie prime acquistate – Disidrat

Reagente	Funzione	U.M.	2021	2022	2023
Cemento	Immobilizzare gli inquinanti	tonn	361,2	484	942
Calce idrata	Correzione PH e Coadiuvante della flocculazione	tonn	437,47	492,79	836,01
Cloruro ferroso/ferrico	Coagulante	tonn	215,03	231,01	385,69
Acido solforico	Acidificazione soluzione lavaggio scrubber	tonn	0	3	0

FONTE: REPORT INTERNO SUI CONSUMI MATERIE PRIME

L'indicatore "Fattore di utilizzo reagenti" evidenzia i consumi specifici di reagenti per unità di rifiuto trattato. Si precisa che non è stata considerata la totalità dei rifiuti in ingresso all'impianto Disidrat ma solo i rifiuti trattati effettivamente con i relativi reagenti (per il cemento si sono considerati quali rifiuti trattati i fanghi palabili che vanno ad inertizzazione). Nel grafico sottostante, inoltre, non è riportato l'indicatore per l'acido solforico in quanto non correlato ai rifiuti in ingresso.

Figura 50 Andamento dell'indicatore "Consumo reagenti su rifiuti trattati"

L'andamento dell'indicatore risulta pressoché stazionario eccetto per il valore relativo al cemento nel 2023. L'andamento del consumo di cemento è correlabile alle quantità ricevute di rifiuti con caratteristiche idonee con i quali sostituire le materie prime e influenzato dalla tipologia di rifiuti in ingresso.

Nell'ottica di ottimizzare il consumo dei reagenti è previsto, come riportato nel programma ambientale, un obiettivo di riduzione della calce idrata utilizzata nella sezione di filtropressatura, si veda § 14.

12.8 GENERAZIONE DI RUMORE

Il sito impiantistico ai sensi della classificazione acustica del territorio comunale, approvata con deliberazione del Consiglio Comunale n. 54 del 28/05/2015, ricade in Classe V "Aree prevalentemente industriali" che prevede i seguenti limiti assoluti di immissione: 70 dB(A) diurno e 60 dB(A) notturno, ad eccezione di un piccolo tratto nell'angolo Sud-Est che ricade in classe III "Aree di tipo misto" i cui limiti di immissione sono: 60 dB(A) diurno e 50 dB(A) notturno.

Per la valutazione dell'impatto acustico determinato dagli impianti oggetto del presente documento, si fa riferimento al monitoraggio svolto per l'intero Comparto nel mese di novembre 2023 che ha preso in considerazione tutti gli impianti insediati tra cui il Centro di stoccaggio e pretrattamento rifiuti urbani e speciali anche pericolosi (Centro HASI), ubicato nel Comparto ma non ricompreso nell'ambito di applicazione della presente Dichiarazione Ambientale.

Nello specifico, sono state effettuate rilevazioni fonometriche in periodo diurno e notturno in corrispondenza dei recettori sensibili potenzialmente disturbati dall'attività del comparto polifunzionale (R1, R3, R6, R7 e R9). Lo scopo della presente indagine è, infatti, di verificare il rispetto dei limiti assoluti di immissione e del criterio differenziale⁴⁷.

Nella Figura 51 si riportano i recettori individuati in prossimità del Comparto che rientrano rispettivamente nelle seguenti classi:

- R1 e R6 sono collocati in Classe IV "Aree di intensa attività umana" con limiti di immissione diurni di 65 dB(A) e notturni di 55 dB(A);
- R3 e R7 sono collocati in Classe IV "Aree di intensa attività umana" con limiti di immissione solo diurni, in quanto occupati solo in periodo diurno, di 65 dB(A);
- R9 risulta collocato in Classe III con limiti di immissione diurni di 60 dB(A) e notturni di 50 dB(A).

Figura 51 Ortofoto dell'area con indicazione della posizione dei ricettori [Fonte: Verifica impatto acustico 2023]

Al fine di effettuare il corretto confronto con i limiti normativi, per individuare l'effettivo contributo del Comparto sui ricettori esposti alle sorgenti stradali, trattandosi di un sito a ciclo continuo, sono stati considerati i livelli sonori percentili L₈₅, ovvero i livelli sonori misurati in periodo notturno esclusa la componente imputabile al rumore stradale (tutti i punti di misura ricadono all'interno delle fasce di pertinenza stradale).

⁴⁷ La differenza tra il rumore ambientale e il rumore residuo non deve essere superiore ai 5dB(A) nel periodo diurno e ai 3 dB(A) nel periodo notturno.

Nella seguente tabella si riportano gli esiti dei rilievi fonometrici rilevati durante la campagna di monitoraggio acustico.

Tabella 30 Verifica dei limiti di zona ai ricettori

Punto di rilevazione	Classe	LIMM/AMB (L85) [dB(A)]	Limite di immissione DIURNO [dB(A)]	Limite di immissione NOTTURNO [dB(A)]
R1	IV	35,8	65	55
R3	IV	33,6	65	_*
R6	IV	36,5	65	55
R7	IV	38,4	65	_*
R9	Ш	39,6	65	50

^{*}I ricettori R3 ed R7 risultano occupati solo in periodo diurno.

FONTE: Verifica Impatto acustico 2023

Le valutazioni condotte hanno evidenziato il rispetto sia dei limiti di immissione che del criterio differenziale risultato inapplicabile per il periodo di riferimento diurno e notturno per tutti i recettori, pertanto non si evidenziano criticità legate all'esercizio dell'impianto.

12.9 RIFIUTI IN USCITA

Il sistema di gestione ambientale, in ottemperanza a specifica procedura interna, stabilisce l'attribuzione della significatività all'aspetto "rifiuti in uscita" per tutti gli impianti Herambiente. Di conseguenza il sistema è dotato di specifiche procedure che disciplinano la corretta caratterizzazione/classificazione dei rifiuti prodotti.

Le strategie dell'organizzazione, in tema di gestione rifiuti, tendono a sfruttare al massimo i vantaggi offerti dalla gestione interna riducendo quindi le esternalità ambientali negative dovute alla movimentazione del rifiuto. Si ricorre all'esterno solo qualora non sia possibile attuare una gestione alternativa.

Si segnala, inoltre, che per semplicità espositiva si è scelto di riportare i principali rifiuti autoprodotti dagli impianti in relazione al ciclo produttivo.

12.9.1 Impianto TM

Il processo svolto nell'Impianto TM, sino alla chiusura avvenuta a giugno 2021, ha prodotto le seguenti tipologie di rifiuto: frazione umida e frazione secca, riportate nella seguente tabella.

Tabella 31 Rifiuti prodotti dall'impianto TM (tonnellate)

SEZIONE PRODUZIONE	DESCRIZIONE RIFIUTI	CODICE EER	Pericoloso/ Non Pericoloso	2021	DESTINAZIONE
Vagliatura primaria	Frazione umida	191212	NP	8.204,15	Recupero
Vagliatura primaria	Frazione secca	191212	NP	17.574,08	Smaltimento
Vagliatura primaria	Frazione secca	191212	NP	0	Recupero

FONTE: ESTRAZIONE DA SOFTWARE DI GESTIONE RIFIUTI

La frazione umida derivante dalla vagliatura primaria era inviata a recupero presso gli impianti di compostaggio di Herambiente mentre il quantitativo di frazione secca prodotta era inviata principalmente a smaltimento e, secondariamente, a recupero energetico presso i termovalorizzatori del Gruppo.

Non si riportano i rifiuti in uscita prodotti dalla riattivazione temporanea dell'impianto TM nel corso del 2023 a seguito dell'emergenza alluvione in quanto già rendicontati nel paragrafo relativo ai rifiuti in ingresso (§ 10.2.1).

12.9.2 Discariche

I prodotti principali delle discariche sono costituiti dal percolato, generato primariamente per infiltrazione di acqua meteorica nel corpo di discarica, e dal biogas, originato dalla decomposizione anaerobica del rifiuto. Per la discarica per rifiuti pericolosi e per le discariche per rifiuti speciali pericolosi e non pericolosi 1°/2° stralcio, 3° stralcio e 4° stralcio si ritiene altamente improbabile la produzione di biogas, in quanto i rifiuti conferiti sono caratterizzati da assenza di frazione organica fermentabile.

A questi si aggiungono i rifiuti prodotti dalle operazioni di coltivazione (stesura, compattazione dei rifiuti scaricati) associati prevalentemente alla manutenzione dei mezzi utilizzati che sono in carico alla ditta appaltatrice.

Biogas

Il biogas è il principale prodotto della decomposizione della frazione organica dei rifiuti in assenza di ossigeno. I fenomeni alla base della sua produzione sono già stati precedentemente descritti al paragrafo 10.3.6. Formalmente, la miscela gassosa si configura come rifiuto e pertanto è gestita come tale. I quantitativi di biogas inviati a recupero energetico sono indicati nella tabella seguente dai quali si evince nel triennio di riferimento una leggera flessione a seguito della cessazione dei conferimenti.

Tabella 32 Biogas prodotto dalla discarica rifiuti non pericolosi (tonnellate)

SEZIONE PRODUZIONE	DESCRIZIONE RIFIUTI	CODICE EER	Pericoloso/ Non Pericoloso	2021	Anno 2022	2023	DESTINAZIONE
Discarica per rifiuti non pericolosi	Biogas	190699	NP	8.850	7.158	7.685	Recupero energetico

FONTE: ESTRAZIONE DA SOFTWARE DI GESTIONE RIFIUTI

<u>Percolato</u>

Il percolato, le cui modalità gestionali sono riportate nel paragrafo 10.3.5, rappresenta il rifiuto prodotto con maggior rilevanza in termini quantitativi.

Nella seguente tabella sono riportati i quantitativi di percolato prodotti dalle discariche presenti nel Comparto e inviato a trattamento presso il coinsediato impianto TCF oppure al TAS mediante autobotte. A questi si aggiungono i rifiuti smaltiti come percolato derivanti dalle normali operazioni di manutenzione e pulizia del sistema di drenaggi e vasche della rete del percolato, inviati al Disidrat.

Nella tabella si riporta anche la classificazione di pericolosità del percolato dalla quale si evince come anche la discarica per rifiuti pericolosi produce percolati non pericolosi, a testimonianza della buona segregazione ed isolamento del rifiuto in essa depositato.

Tabella 33 Percolato prodotto dalle discariche (tonnellate)

SEZIONE	DESCRIZIONE	CODICE	Pericoloso/ Non		Anno		DESTINAZIONE
PRODUZIONE	RIFIUTI	EER	Pericoloso	2021	2022	2023	
Corpo discarica NP	Percolato	190703	NP	19.155	17.323	27.952	Smaltimento
Corpo di discarica P	Percolato	190703	NP	143	113	421	Smaltimento
Corpo discarica 1°/2°stralcio	Percolato	190703	NP	2.161	1.327	2.001	Smaltimento
Corpo discarica 3°stralcio	Percolato	190703	NP	669	725	1.122	Smaltimento
Corpo discarica 4°stralcio	Percolato	190703	NP	1.964	842	763	Smaltimento

FONTE: ESTRAZIONE DA SOFTWARE DI GESTIONE RIFIUTI

I quantitativi di percolato prodotto dalle discariche insediate nel sito presentano nel periodo di riferimento un andamento variabile legato sia agli eventi meteorici che alle realizzazioni delle coperture definitive/provvisorie. Nel dettaglio, si osserva un generale incremento nel 2023 della produzione di percolato correlato ai maggior eventi meteorologici che hanno caratterizzato il periodo, in particolar modo agli eventi meteo eccezionali di maggio 2023. Per quanto riguarda il 4° stralcio la flessione registrata dal 2022 può essere ricondotta alla realizzazione della copertura definitiva terminata a ottobre 2021.

Nelle successive tabelle si riporta la composizione dei percolati provenienti dagli impianti di discarica. Il maggior contenuto di COD e Azoto ammoniacale presente nel percolato della discarica per rifiuti non pericolosi è dovuto al maggior contenuto di sostanza organica dei rifiuti in essa depositati.

Tabella 34 Caratterizzazione del percolato da discarica per rifiuti non pericolosi – Media annua

PARAMETRO	U.M.	2021	2022	2023
рН	mg/l	8,07	8,10	7,94
COD	mg/l	5.732	5.371	4.461
Cromo VI	mg/l	<0,5	<0,1	<0,1
Ferro	mg/l	20,62	14,61	16,12
Manganese	mg/l	0,52	0,50	0,41
Solfati	mg/l	250,79	347	369
Cloruri	mg/l	2.166	4.024	3.328
Azoto ammoniacale	mg/l	1.917	2.054	1.893
Conducibilità	mS/cm	23,01	23,01	21,89

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Tabella 35 Caratterizzazione del percolato da discarica per rifiuti pericolosi – Media annua

PARAMETRO	U.M.	2021	2022	2023
рН	mg/l	8,22	8,47	8,40
COD	mg/l	695	500	570
Cromo VI	mg/l	20,23	20,91	1,43
Ferro	mg/l	2,42	1,20	2,32
Manganese	mg/l	0,296	0,17	0,62
Solfati	mg/l	1.420	1.540	1.198
Cloruri	mg/l	2.260	2.240	1.605
Azoto ammoniacale	mg/l	283	254	196
Conducibilità	mS/cm	10,9	10,81	8,38

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

 $Tabella~36~Caratterizzazione~del~percolato~da~discarica~per~rifiuti~pericolosi~e~non~pericolosi~1^\circ/2^\circ,~3^\circ~e~4^\circ~stralcio~-~Media~annu$

PARAMETRO	U.M.	2021	2022	2023
рН	mg/l	7,94	8,27	8,09
BOD	mg/l	1.809	1.383	2.609
COD	mg/l	3.932	3.253	5.953
Cromo VI	mg/l	<0,5	<0,9	<0,5
Cadmio	mg/l	0,005	0,01	0,01
Mercurio	mg/l	0,0005	0,0004	0,0006
Nichel	mg/l	0,25	0,36	0,29
Rame	mg/l	0,29	0,26	0,26

PARAMETRO	U.M.	2021	2022	2023
Solfati	mg/l	549	513	802
Cloruri	mg/l	12.633	12.538	17.115
Azoto ammoniacale	mg/l	758	695	804
Conducibilità	mS/cm	35,06	34,35	48,60

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

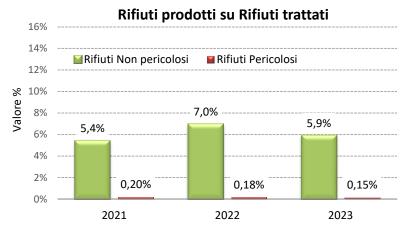
12.9.3 Trattamento Chimico-fisico

I rifiuti caratteristici dell'impianto sono:

- fanghi di risulta dalle attività di trattamento;
- la oli provenienti dalla sezione di trattamento delle emulsioni oleose.

La successiva tabella riporta i quantitativi, le sezioni di produzione, le caratteristiche di pericolosità e le destinazioni dei principali rifiuti prodotti dall'impianto.

Si precisa che sono esclusi i rifiuti provenienti da manutenzione straordinaria e tutti i rifiuti non direttamente correlati al processo. Come si evince dalla tabella, nel periodo di riferimento i quantitativi di rifiuti prodotti mostrano un andamento variabile. In particolare, la produzione di fango (EER 190206), in leggero aumento nel triennio, è in parte ascrivibile all'esecuzione della pulizia della vasca V1 ed in parte influenzato dal consumo dei reagenti utilizzati nel processo, mentre l'andamento degli oli da trattamento emulsioni (EER 130506) è strettamente correlabile alla tipologia dei rifiuti in ingresso.


Tabella 37 Rifiuti prodotti dall'Impianto TCF (tonnellate)

SEZIONE PRODUZIONE	DESCRIZIONE RIFIUTI	CODICE EER	Pericoloso/ Non Pericoloso	2021	Anno 2022	2023	DESTINAZIONE
Tutte le sezioni di trattamento	Fanghi	190206	NP	5.134	7.263	7.614	Smaltimento
Tutte le sezioni di trattamento	Soluzioni acquose di lavaggio	161002	NP	1.129	724	1.193	Smaltimento
Pretrattamento emulsioni oleose	Oli da trattamento emulsioni	130506	Р	216,28	206,22	0	Smaltimento
Pretrattamento emulsioni oleose	Oli da trattamento emulsioni	130506	Р	0	0	231,76	Recupero
Fango da pulizia vasche	Fanghi	190205	Р	10,85	0	0	Smaltimento

FONTE: ESTRAZIONE DA SOFTWARE DI GESTIONE RIFIUTI

Di seguito si riporta l'indicatore "Rifiuti autoprodotti su Rifiuti trattati".

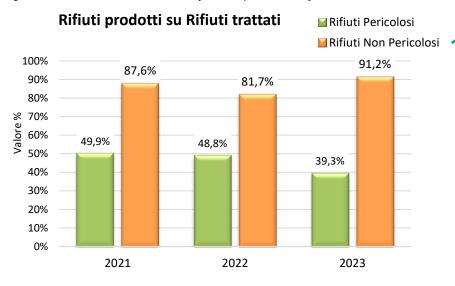
Figura 52 Andamento dell'indicatore "Rifiuti autoprodotti su Rifiuti trattati"

L'indicatore presenta nel periodo di riferimento un trend pressoché stazionario sia per quanto concerne i rifiuti pericolosi sia per i non pericolosi. L'incremento registrato nel 2022 nella produzione dei fanghi è dato dalla pulizia della vasca eseguita nel 2022.

12.9.4 Impianto Disidrat

I principali rifiuti prodotti sono i fanghi palabili in uscita dalle sezioni di trattamento dell'impianto oltre alle acque di risulta, derivanti principalmente dal processo di filtropressatura, che vengono conferite via tubo all'adiacente impianto TCF per successivo trattamento.

Si riportano nella tabella seguente i principali rifiuti prodotti dall'impianto nel periodo di riferimento dalla quale si evince dal 2022 un incremento dell'invio a recupero dei rifiuti pericolosi EER 190304 ed il conseguente calo del quantitativo di fanghi palabili inviati a smaltimento. Inoltre, a partire dal 2022, una quota di rifiuti non pericolosi EER 190305 viene inviata a recupero.


Tabella 38 Rifiuti prodotti dall'Impianto Disidrat (tonnellate)

SEZIONE PRODUZIONE	DESCRIZIONE RIFIUTI	CODICE EER	Pericoloso/ Non Pericoloso	2021	Anno 2022	2023	DESTINAZIONE
Filtropressatura	Fanghi palabili non pericolosi	190206	NP	1.335	2.126	3.546	Smaltimento
Inertizzazione	Fanghi palabili non pericolosi	190305	NP	15.207	16.607	20.386	Smaltimento
Inertizzazione	Fanghi palabili non pericolosi	190305	NP	0	2.755	14.180	Recupero
Inertizzazione	Fanghi palabili pericolosi	190304	Р	15.046	7.228	5.349	Smaltimento
Inertizzazione	Fanghi palabili pericolosi	190304	Р	10.215	22.212	29.321	Recupero
Tutte le sezioni di trattamento	Acque di processo	161002	NP	27.810	27.694	42.386	Smaltimento

FONTE: ESTRAZIONI DA SOFTWARE DI GESTIONE RIFIUTI

Si riporta nel grafico seguente l'indicatore "Rifiuti autoprodotti su Rifiuti trattati".

Figura 53 Andamento dell'indicatore "Rifiuti autoprodotti su Rifiuti trattati"

L'indicatore presenta nel periodo di riferimento un andamento in leggera flessione per i rifiuti pericolosi ed in leggero aumento per i non pericolosi.

12.10 AMIANTO

Presso il Comparto era presente una sola copertura in eternit (nome commerciale dell'impasto di amianto e cemento) di circa 2.000 m² posta sul capannone dell'impianto di trattamento CSS che è stata rimossa a inizio 2018, pertanto, attualmente non sono presenti strutture o manufatti contenenti amianto.

12.11 PCB E PCT

Dalle analisi effettuate presso le apparecchiature presenti nel sito non risulta la presenza di sostanze contenenti PCB e PCT.

12.12 GAS REFRIGERANTI

Nei locali di lavoro presenti presso il Comparto sono installati impianti di condizionamento che utilizzano i seguenti refrigeranti: R407C (miscela ternaria di HFC-32/HFC-125/HFC-134a), R410A (miscela di HFC-32/HFC-125) e R32, con ODP (ozone depletion power) nullo.

Queste miscele di gas fluorurati, in conseguenza della legislazione sulle sostanze ozonolesive, sono andate a sostituire quasi completamente i CFC (Clorofluorocarburi), in quanto, non contenendo cloro, non arrecano danni alla stratosfera. Presso il sito è attivo un contratto di manutenzione e controllo fughe che prevede verifiche periodiche di tutte le apparecchiature contenenti gas refrigeranti nel rispetto della normativa di riferimento.

12.13 RICHIAMO INSETTI ED ANIMALI INDESIDERATI

L'attività di trattamento rifiuti può comportare il richiamo di avifauna, roditori ed insetti nell'area di conferimento dei rifiuti e nelle zone limitrofe, sebbene ad oggi sia limitato a seguito della cessazione dei conferimenti in discarica e dell'attività dell'Impianto TM. Al fine di limitare la presenza di animali ed insetti vengono comunque periodicamente realizzate presso il Comparto campagne di disinfestazione e derattizzazione. Il Comparto è poi provvisto di un'opportuna rete di recinzione estesa lungo tutto il perimetro dello stabilimento, la cui integrità viene periodicamente controllata.

12.14 IMPATTO VISIVO E BIODIVERSITÀ

L'impatto visivo del Comparto è dato essenzialmente dalle strutture più in quota:

- Il corpo della discarica di rifiuti pericolosi e non (altezza massima autorizzata 18,60 m s.l.m. per rifiuti assestati al netto del capping di copertura);
- il camino dell'impianto di trattamento CSS di 30 m di altezza;
- li camino del termovalorizzatore di 60 m di altezza.

Il Comparto è comunque ubicato lontano da abitazioni e completamente schermato con l'ausilio di piantumazione di alberi ad alto fusto (pioppi e cipressi) lungo tutto il perimetro; di conseguenza, tale aspetto, risulta non significativo.

Figura 54 Foto aerea del sito

Nel dettaglio, la superficie complessiva dei boschi che si trovano nelle aree interne al perimetro del Comparto è di circa 92.500 m², dei quali circa il 75% sono boschi adulti di tipo misto, mentre il 25% sono boschi di recente

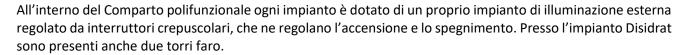

impianto. Sono presenti, inoltre, aree boscate poste esternamente alla recinzione del Comparto che occupano una superficie di circa 73.000 m². Per quanto riguarda l'uso del suolo in relazione alla biodiversità si riporta nella seguente tabella, per i diversi impianti presenti nel sito, i valori delle relative superfici totali e coperte/scoperte impermeabilizzate. In merito alle discariche, per le quali si riporta nella tabella seguente i valori di sedime, si ricorda che al momento della chiusura saranno oggetto di interventi di ripristino ambientale inteso come reinserimento nel territorio del sito.

Tabella 39 Utilizzo del terreno

	Superficie totale [m²]	Superficie coperta [m²]	Superficie scoperta impermeabilizzata [m²]
Impianti TCF / Disidrat	56.750	11.187	28.679
Impianto CSS / IRE	32.000	9.500	22.500
Discariche NP	432.731*	-	-
Discarica P	12.000	-	-
Discarica P e NP 1°/2°, 3°,4° stralcio	118.372	-	-

^{*} Area di sedime dei settori 1°,2°,3°,4°,5°,6°,7°,8°,9°,10° FONTE: AIA / DOMANDE-RIESAME DI AIA SCHEDA A

12.15 INQUINAMENTO LUMINOSO

12.16 RADIAZIONI IONIZZANTI E NON

Nel sito non sono presenti fonti significative di radiazioni ionizzanti e non. Nel corso del 2007 è stato attivato un portale per il rilevamento della radioattività, all'ingresso del Comparto, al fine di evitare il conferimento occulto di rifiuti contaminati non ammissibili. Tutti i mezzi diretti alle discariche per rifiuti speciali pericolosi e non, in ingresso al sito, erano sottoposti preventivamente al controllo sulla radioattività. Il portale non viene più usato per le discariche dal 2016 e risulta a servizio del solo Centro di stoccaggio e pretrattamento gestito da Herambiente Servizi Industriali S.r.l., non ricompreso nella presente dichiarazione ambientale.

12.17 RISCHIO INCIDENTE RILEVANTE

L'unico stabilimento, tra quelli oggetto della presente Dichiarazione, soggetto agli adempimenti di cui al D.Lgs. 105/2015 sul controllo dei pericoli di incidenti rilevanti (normativa Seveso), è il Centro Ecologico Romea composto dall'impianto TCF e dall'impianto Disidrat.

Il Centro Ecologico Romea risulta, infatti, soggetto agli obblighi previsti dagli artt. 13 (Notifica), 14 (Politica di prevenzione degli incidenti rilevanti) e 15 (Rapporto di Sicurezza) del D.Lgs. 105/2015 alla luce dei quantitativi massimi potenzialmente presenti di rifiuti assimilabili alle categorie di sostanze pericolose dell'Allegato 1 del D.Lgs. 105/2015. Nello specifico sono potenzialmente presenti rifiuti con tossicità acuta (HP6) e rifiuti pericolosi per l'ambiente (HP14) ai sensi del Regolamento (UE) n. 1357/2014.

In data 31 maggio 2021, il Gestore ha presentato l'ultimo aggiornamento quinquennale del Rapporto di Sicurezza in ottemperanza a quanto disposto dall'art. 15 del D.Lgs. 105/2015 per il quale si è conclusa la relativa istruttoria di valutazione. Il Gestore, tuttavia, è ancora in attesa del rilascio del Parere Tecnico Conclusivo (PTC) d'istruttoria relativo al verbale n° 387 del 05/04/2023, con cui il Comitato Tecnico Regionale dei VVF di Bologna (CTR) ha comunicato la conclusione dell'istruttoria del Rapporto di Sicurezza del 2021, approvandolo formalmente. Il nuovo Rapporto di Sicurezza non ha modificato gli scenari incidentali della precedente edizione, già valutati positivamente dal CTR in occasione della precedente istruttoria. Inoltre, il Gestore ha inviato alle Autorità Competenti la Notifica di cui all'art. 13 del D.Lgs. 105/2015, contenente l'informativa sui rischi di incidente rilevante per i cittadini e i lavoratori, aggiornata in relazione ai contenuti del nuovo Rapporto di Sicurezza e, soprattutto, alla figura del responsabile impianto che è cambiata rispetto all'ultima emissione.

Ciascun operatore presente presso l'impianto è mantenuto informato sulle tematiche dei rischi di incidente rilevante e sulle misure atte a prevenirli e/o a limitarne le conseguenze per l'uomo e per l'ambiente.

Il personale addetto alla squadra di emergenza, unitamente alla formazione in materia di antincendio, primo soccorso ed evacuazione, riceve uno specifico addestramento sulla gestione degli eventi che possono evolvere ad incidenti rilevanti (Top Event). Le prove di emergenza simulata relative alla messa in atto del Piano di Emergenza Interno sono svolte con frequenza almeno trimestrale.

Il Piano di Emergenza Interno, oltre a definire le specifiche procedure da attivare al verificarsi di un possibile incidente rilevante, riporta anche le modalità con cui devono essere informate le Autorità Competenti in caso di necessità. L'aspetto risulta significativo, per criterio di valutazione interno, in quanto rientra nel campo di applicazione della normativa sui rischi di incidente rilevante.

12.18 RISCHIO INCENDIO

Relativamente al rischio incendio, l'organizzazione ha predisposto le condizioni di sicurezza necessarie ad ottemperare al rispetto della normativa antincendio, ottenendo in merito all'impianto di termovalorizzazione ed alle discariche il Certificato Prevenzione Incendi (CPI) Pratica n. 21403, cui sono seguiti successivi aggiornamenti, e relativamente agli impianti di produzione di energia elettrica il Certificato Prevenzione Incendi (CPI) Pratica. n. 33104. Successivamente, è stata presentata al Comando Provinciale VV.F. di Ravenna comunicazione di messa fuori esercizio dell'impianto CDR-IRE e dell'impianto Biomether⁴⁸ ed attestazione di rinnovo periodico di conformità antincendio per entrambe le pratiche⁴⁹.

Secondo quanto concordato con il Comando Provinciale VVF, inoltre, è stato trasmesso l'esame progetto per la dismissione degli impianti antincendio CDR-IRE e messa fuori servizio della rete idranti delle discariche, per il quale è stato ottenuto parere favorevole in data 06/10/2022⁵⁰. La conclusione delle attività come da esame progetto, si è conclusa nel mese di marzo 2023, tramite presentazione di specifica SCIA⁵¹ che ha aggiornato, per la pratica n. 21403, l'elenco delle sostanze/attività che presentano pericolo di incendio o scoppio (es. rete di captazione biogas, deposito carta e cartone, ecc.), degli impianti e delle apparecchiature pericolose e dei dispositivi antincendio relativi. Successivamente è stato eseguito il sopralluogo da parte dei VVF in seguito al quale è stato rilasciato il rinnovo del CPI in data 14/02/2024⁵².

L'impianto di trattamento chimico-fisico e il Disidrat sono dotati di proprio Certificato di Prevenzione Incendi rilasciato dal Comando Provinciale VV.F. di Ravenna con Prot. n. 14071 del 28/11/2013 (Pratica 39983), rinnovato, nel corso del 2021, in occasione della Presentazione dell'Aggiornamento del Rapporto di Sicurezza ai sensi del D.Lgs. 105/2015. La presentazione del Rapporto di Sicurezza ex art. 15 del D.L.gs 105/15, avvenuta in data 31/05/2021, e della documentazione integrativa prevista dal DPR 151/2011 e s.m.i. relativa alle specifiche attività previste, per le quali è stata attestata l'assenza di variazioni alle condizioni di sicurezza antincendio rispetto a quanto attestato con il precedente CPI, fungono infatti da attestazioni di rinnovo periodico di conformità antincendio ai sensi dell'art. 5 del DPR 151/2011 e s.m.i. Pertanto, l'attuale CPI degli impianti TCF e Disidrat, in assenza di variazioni impiantistiche significative ai fini della prevenzione incendi, avrà validità fino al 2026.

Il possibile verificarsi di un incendio viene gestito, secondo modalità riportate nel piano di emergenza interno, dalla squadra di emergenza costituita da personale adeguatamente formato in conformità a quanto previsto dal D.M. 10/03/1998 in materia antincendio, sostituito a partire da ottobre 2022 dal D.M. 02/09/2021, e dal D.M n. 388 del 15/07/2003 in materia di primo soccorso. Inoltre, tutto il personale è coinvolto, con cadenza almeno annuale, in simulazioni di condizioni di emergenza che richiedono anche l'evacuazione.

Si evidenzia, inoltre, che da procedura interna e con cadenza quadrimestrale, sono effettuate volontariamente anche prove di esplosività sul corpo discarica. Nel triennio di riferimento non si sono verificati incendi.

⁴⁸ Comunicazione HA Prot. 18399 del 24/11/2021.

⁴⁹ Prot. HA 14337/22 del 17/11/2022 e Prot. HA 14332/22 del 17/11/2022.

⁵⁰ Parere Conformità VVF (Protocollo Herambiente in entrata n 0012352 del 06/10/2022.

⁵¹ Campo di applicazione del CPI, attività dell'Allegato 1 DPR 151/11: n° 1.1.C-6.1.A-34.1.B-12.1.A-12.2.B-49.2.B-49.3.C.

⁵² Rilascio CPI VVF Protocollo HA n. 2193 del 14/02/2024.

13 ASPETTI AMBIENTALI INDIRETTI

La valutazione degli aspetti ambientali è stata integrata con l'analisi degli aspetti ambientali indiretti derivanti principalmente dall'interazione dell'azienda con imprese terze appaltatrici. Il sistema di gestione integrato prevede un processo di qualificazione e valutazione dei fornitori il cui operato è soggetto ad un costante controllo.

Traffico e viabilità

Il traffico veicolare indotto dall'impianto è dovuto essenzialmente all'accesso ed all'allontanamento dal complesso impiantistico degli autoarticolati.

L'accesso principale al Comparto è la S.S. 309 Romea, raggiungibile da più direttrici stradali (Autostrada A14 dir. Ravenna, S.S. 16 Adriatica), senza significativi attraversamenti di centri urbani. Inoltre, è presente un accesso secondario costituito dalla strada comunale via Guiccioli utilizzato esclusivamente dal personale che presta servizio presso il Comparto stesso. L'impatto dovuto al traffico sul sistema viario circostante, data l'intensa viabilità che caratterizza la Strada Statale Romea, è da considerarsi non significativo.

Per quanto riguarda invece la regolamentazione del traffico all'interno del Comparto, la principale modalità è costituita dalla pianificazione degli accessi, gestita a cura del servizio Amministrativo Gestionale, compatibilmente con le necessità produttive dei vari impianti.

Consumi energetici

La presente sezione rappresenta il completamento di quanto riportato al capitolo "Energia".

Come descritto al paragrafo 12.1.2, nelle discariche in coltivazione i consumi energetici maggiori sono imputabili ai carburanti necessari al funzionamento dei mezzi d'opera coinvolti nelle operazioni di stendimento, compattazione del rifiuto e copertura. Essendo terminati i conferimenti a settembre 2021, dal 2022 non è avvenuto più alcun consumo di gasolio per le operazioni di coltivazione della discarica, prima in capo a terzi. Nella seguente tabella si riportano, pertanto, i consumi di gasolio per il solo anno 2021.

Tabella 40 Consumo di combustibile nell'attività di coltivazione

Fonte energetica	U.M.	2021
- "	litri	42.779
Gasolio	tep	37

FONTE: REPORT INTERNI

14 OBIETTIVI, TRAGUARDI E PROGRAMMA AMBIENTALE

Come richiamato nella **strategia aziendale legata all'identificazione degli obiettivi**, riportata nella parte generale della presente Dichiarazione Ambientale, l'alta direzione individua le priorità aziendali coerentemente con il Piano Industriale di Herambiente Spa che prevede una strategia di sviluppo ambientale valutata in una logica complessiva. Occorre quindi considerare il ritorno ambientale del programma di miglioramento di Herambiente Spa in un'ottica d'insieme.

Di seguito sono riportati gli obiettivi di miglioramento raggiunti nel triennio precedente, a seguire quelli in corso e previsti per il prossimo triennio di validità della registrazione EMAS e quelli annullati/sospesi.

Obiettivi raggiunti

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
Discariche	Ottimizzazione processi, attività e risorse Miglioramento continuo e sostenibilità Tutela dell'ambiente	Gestione del processo Recupero energetico	Garantire l'efficienza del recupero energetico presso le discariche attraverso il collegamento tra i due motori Ravenna 2 e Ravenna 3, quest'ultimo risulta già collegato a sua volta al motore Ravenna 4 (A e B), come da obiettivo raggiunto, al fine di assicurare la gestione sinergica di tutti i motori e conseguentemente il recupero energetico, in caso di fermo per manutenzione di uno di questi, evitando così il ricorso alla torcia. 1) Richiesta/ottenimento autorizzazione 2) Realizzazione e messa in esercizio.	Resp. BU Discariche Resp. Impianto	Euro 70.000	1) 2021 2) 2022 1) – 2) Obiettivo raggiunto. Con il provvedimento di modifica non sostanziale di AIA DET-AMB-2021-4733 è stato autorizzato il riassetto dei sistemi di aspirazione e combustione (torce/motori endotermici) del biogas di discarica mediante l'unificazione di tutte le centrali di aspirazione del biogas per massimizzarne l'invio a recupero energetico. I lavori si sono conclusi a fine 2021.
Impianto Disidrat	Ottimizzazione processi, attività e risorse Miglioramento continuo e sostenibilità	Efficientamento energetico Gestione del processo	Efficientamento dei consumi energetici attraverso l'installazione di 3 inverter sui ventilatori di aspirazione trattamento aria, programmati in modo da regolarne il funzionamento sulla base delle attività lavorative (giorno/notte), con contestuale ottimizzazione dei consumi.	Resp BU Rifiuti Industriali Resp. Impianto	Euro 20.000	2021 Obiettivo raggiunto.
Comparto (tutti gli impianti)	Migliori tecnologie	Acque superficiali	Realizzazione di opere per il riassetto di tutto il sistema di regimazione e raccolta delle acque meteoriche e reflue industriali di tutto il comparto. Il progetto è suddiviso in scenari ciascuno dei quali prevede la realizzazione specifiche attività il cui stato di avanzamento viene periodicamente condiviso con gli Enti. Ad oggi sono stati identificati tre scenari per la realizzazione dell'obiettivo (0, 1 e 2).	Resp. BU Discariche Resp. Tecnologia Ingegneria	Euro 2.250.000	1) 2009 2) 2010 3) 2011-2012 Ultimo intervento ripianificato al 2019 Nel corso degli anni, a seguito dei progressivi interventi di esecuzione delle opere, gli scenari sono stati superati da scadenze specifiche per singole realizzazioni.

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
						Le principali opere previste dal progetto sono state tutte realizzate (conclusione vasca VA per discarica NP al 30/06/2013), rimane ad oggi ancora da implementare, anche a seguito della rinuncia nel 2016 dell'ampliamento delle discariche per rifiuti speciali pericolosi e non, la vasca VA1 per la raccolta delle acque meteoriche di dilavamento provenienti dal corpo discariche P e dalle discariche 1°/2°, 3° e 4° stralcio, da realizzare una volta concluso l'iter autorizzativo per entrambe le discariche. Ultimo intervento ripianificato al 30.12.2021 I lavori di realizzazione della vasca VA1 a causa di alcuni ritardi dell'impresa affidataria hanno effettivamente avuto avvio solo in data 16/12/2019, per subire poi successivamente ulteriori rallentamenti sempre dovuti alla ditta incaricata, che è stata poi sostituita. Attualmente i lavori risultano in corso e ne è prevista l'ultimazione entro la fine del 2021, come da proroga rilasciata dall'Autorità Competente. Ultimo intervento ripianificato al 30.06.2022 I lavori sono in corso di realizzazione come da ulteriore proroga rilasciata con DET-AMB-2021-5332 del 26/10/2021. Obiettivo concluso con la realizzazione della Vasca VA1, terminata a giugno 2022.
Discariche	Ottimizzazione processi, attività e risorse Miglioramento continuo e sostenibilità Tutela dell'ambiente	Rifiuti prodotti Gestione del processo	Ridurre la quantità di rifiuti prodotti all'interno del sito impiantistico e in particolate nell'ambito delle discariche, attraverso la realizzazione e l'attivazione di due nuovi punti di scarico in acque superficiali (Scolo Tomba) per l'avvio delle acque meteoriche e di dilavamento dei settori della discarica per rifiuti P (settore ex-2C) e della discarica 3° stralcio per Rifiuti P e NP, che attualmente vengono raccolte in vasche dedicate per poi essere avviate a trattamento. Tali acque insistono su superfici dotate da tempo di copertura definitiva e quindi di tutti i presidi previsti dal D.Lgs. 36/03 per escludere la contaminazione delle stesse acque (ovvero una copertura definitiva inerbita) e, sono risultate nel tempo pienamente conformi ai valori limite di emissione previsti per lo scarico in acque superficiali di cui	Resp. BU Discariche Resp. Impianto	Costi ricompresi nel 5°stralcio	1) 2021 2) 2022 1) Raggiunto con Provvedimenti di MNS di AIA DET-AMB-2021-5180 del 18/10/2021 e DET-AMB-2021-5362 del 27/10/2021 che autorizzano rispettivamente lo scarico diretto in acque superficiali (Scolo Tomba) delle acque meteoriche di dilavamento della discarica per rifiuti pericolosi e lo scarico diretto delle acque meteoriche di dilavamento della discarica 3° stralcio, attraverso un nuovo punto di scarico SB. 2) Realizzazione del nuovo punto di scarico SB, ultimato ad aprile 2022.

Campo di applicazione	Rif. Politica Ambientale Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ Scadenze impegno
		alla Tabella 3 Allegato 5 alla parte III del D. Lgs 152/06 e s.m.i. 1) Richiesta/ottenimento autorizzazione. 2) Realizzazione.		

Obiettivi in corso

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
Impianto Disidrat	Ottimizzazione processi, attività e risorse Miglioramento continuo e sostenibilità Tutela dell'ambiente	Consumo reagenti Gestione del processo	Riduzione del consumo di calce idrata, utilizzata nella linea 1 di disidratazione fanghi, attraverso l'impiego di rifiuti polverulenti, da utilizzare direttamente come reagenti insieme agli altri reattivi chimici in uso, nella sezione di filtropressatura. Risultati attesi: riduzione del 5% del consumo di calce idrata 1) Richiesta/ottenimento autorizzazione. 2) Realizzazione linea di dosaggio. 3) Risultati attesi.	Resp BU Rifiuti Industriali Resp. Impianto	Euro 40.000	1) 2020-2021 2) 2022-2023 3) 2024 Ripianificate 1) 2020 - 2025 1) 2024-2025 2) 2025 3) 2027 1) Presentata richiesta nel 2020 all'Autorità Competente nell'ambito del Riesame di AIA. Il procedimento è ancora in corso; si sta valutando la presentazione di una eventuale modifica non sostanziale ad hoc. Visto il perdurarsi del procedimento autorizzativo si ripianificano le scadenze.
Impianto TCF	Ottimizzazione processi, attività e risorse Miglioramento continuo e sostenibilità Tutela dell'ambiente	Recupero idrico	Favorire il recupero di risorsa idrica da reimpiegare nei processi produttivi dell'impianto TCF, al fine di ridurre il prelievo di acqua industriale da acquedotto, attraverso o il recupero delle acque meteoriche che insistono sul sito o il recupero delle acque di scarico del depuratore di Ravenna. 1) Progettazione interventi. 2) Richiesta/ottenimento autorizzazione. 3) Realizzazione. 4) Risultati attesi: riduzione del consumo di acqua industriale approvvigionata da acquedotto di circa 10.000 m3/anno.	Resp BU Rifiuti Industriali Resp. Impianto	Costi in corso di preventivaz ione	1) - 2) 2021-2022 3) 2023 4) 2024 1) Raggiunto. 2) Modifica non sostanziale relativa al recupero delle acque meteoriche come acque industriali, richiesta ed ottenuta nel 2022. L'obiettivo prevederà pertanto il recupero di tali acque e non si utilizzeranno quelle provenienti dallo scarico del Depuratore. 3) Interventi in corso di realizzazione.

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
Impianto TCF	Ottimizzazione processi, attività e risorse Tutela dell'ambiente Miglioramento continuo e sostenibilità	Emissioni diffuse e odorigene Gestione del processo	Ottimizzazione e miglioramento del sistema di trattamento delle emissioni odorigene e diffuse attraverso la realizzazione di un nuovo sistema di abbattimento, costituito da scrubber ad umido a doppio stadio seguito da filtro a carboni attivi, dedicato al trattamento dell'aria aspirata da tutte le sezioni impiantistiche del TCF, con dismissione dell'attuale sistema di abbattimento a filtri a zeolite. 1) Richiesta/ottenimento autorizzazione. 2) Realizzazione.	Resp BU Rifiuti Industriali Resp. Impianto	Euro 400.000	1) 2020-2021 2) 2022-2024 Ripianificato 2) 2025-2027 1) Presentata richiesta all'Autorità Competente nel 2020 nell'ambito della domanda di Riesame di AIA. Il procedimento è ancora in corso. Visto il perdurarsi del procedimento autorizzativo si ripianificano le scadenze.
Comparto (tutti gli impianti)	Ottimizzazione processi, attività e risorse Tutela dell'ambiente Miglioramento continuo e sostenibilità	Produzione energia rinnovabile	Favorire la produzione di energia rinnovabile presso il sito impiantistico attraverso l'installazione da parte di Hera Spa di un impianto fotovoltaico sul piano sommitale e sui banchi laterali dei corpi di discarica ad oggi esauriti per rifiuti NP (1°/2°/3°/4°/5°/6° settore) e sul 4° stralcio della discarica per rifiuti P e NP, evitando così il consumo di nuovo suolo. L'impianto fotovoltaico avrà una potenza nominale superiore a 20kWp e sarà costituito da 14.100 pannelli fotovoltaici con potenza unitaria pari a circa 535 W ciascuno. L'energia prodotta dall'impianto fotovoltaico verrà utilizzata in autoconsumo dal comparto e l'eccedenza ceduta alla rete nazionale, contribuendo alla riduzione di immissione in atmosfera di anidride carbonica, rispetto all'utilizzo di energia elettrica prodotta da combustibili fossili. La presenza dell'impianto FTV non genererà impatti sulle matrici ambientali, che pertanto saranno regolarmente monitorate secondo quanto previsto dall'attuale Piano di Monitoraggio e Controllo. 1) Richiesta/ottenimento autorizzazione. 2) Realizzazione interventi e risultati attesi.	Resp. BU Discariche Resp. Impianto	Circa 10 Mln di Euro	1) 2023-2024 2) 2025-2027
Impianto TCF	Ottimizzazione processi, attività e risorse Tutela dell'ambiente	Consumo di risorse	Favorire la riduzione del consumo di materie prime per il trattamento chimico-fisico dei rifiuti attraverso l'impiego di rifiuti stessi aventi caratteristiche tali da sostituire/integrare i reagenti in uso nel processo con funzione di coagulanti a base di ferro e correttori del pH per soluzioni acide. 1) Sostituzione e installazione nuovo serbatoio per il ritiro di rifiuti acidi da impiegare come reagenti.	Resp BU Rifiuti Industriali Resp. Impianto	Euro 150.000	1) 2024-2025 2) 2027

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
	Miglioramento continuo e sostenibilità		2) Risultati attesi: riduzione di circa 100 tonn/anno di reagenti a base ferro.			
Impianto TCF	Ottimizzazione processi, attività e risorse Tutela dell'ambiente Miglioramento continuo e sostenibilità	Consumo di risorse	Ridurre il consumo di calce idrata impiegata nel processo attraverso il recupero dell'eluato in uscita dalla filtropressa che presentando caratteristiche alcaline può essere rinviato nello stadio di neutralizzazione con funzione di reagente. (intervento già autorizzato) 1) Realizzazione. 2) Risultati attesi: riduzione di circa il 5% di calce idrata/anno (rispetto ai dati 2023).	Resp BU Rifiuti Industriali Resp. Impianto	Euro 40.000	1) 2024-2025 2) 2027

Obiettivi annullati/sospesi

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
Discariche – Disidrat	Ottimizzazione processi, attività e	Gestione rifiuti Gestione del processo	Favorire la gestione integrata dei rifiuti all'interno del comparto impiantistico, attraverso la realizzazione di un nuovo stralcio di discarica per rifiuti non pericolosi (5°	Resp. BU Discariche Resp. Impianto	Euro 14 milioni	1) 2020-2021 2) 2021-2023 3) 2024
	risorse Miglioramento continuo e		stralcio), di capacità pari a circa 302.000 mc, destinato a ricevere almeno per i due terzi della sua capacità i rifiuti provenienti dal vicino impianto Disidrat, favorendo la			1) Presentato PAUR alle Autorità Competenti in data 18.06.2020. Il procedimento è in corso.
	sostenibilità Tutela dell'ambiente		sinergia all'interno del sito e contestualmente riducendo le emissioni veicolari ed i consumi energetici legati al loro allontanamento e invio a trattamento presso impianti terzi. 1) Richiesta/ottenimento autorizzazione 2) Realizzazione 3) Avvio conferimenti e coltivazione 5° stralcio.			L'obiettivo viene annullato, dato il protrarsi del tempo di approvazione del piano urbanistico, per cui la società ha trasmesso richiesta di archiviazione, pur confermando l'interesse per l'opera in progetto che rappresenta a tutti gli effetti un asset strategico, in primis, per la gestione dei rifiuti speciali prodotti sul territorio regionale.

GLOSSARIO

Acque di prima pioggia: i primi 2,5 – 5 mm. di acqua meteorica di dilavamento uniformemente distribuita su tutta la superficie scolante servita dal sistema di drenaggio. Si assume che tale valore si verifichi in un periodo di tempo di 15 minuti.

Acque di seconda pioggia: acqua meteorica di dilavamento derivante dalla superficie scolante servita dal sistema di drenaggio e avviata allo scarico nel corpo recettore in tempi successivi a quelli definiti per il calcolo delle acque di prima pioggia (dopo 15 minuti).

AIA (Autorizzazione Integrata Ambientale): provvedimento che autorizza l'esercizio di una installazione rientrante fra quelle di cui all'articolo 4, comma 4, lettera c) del D.Lgs. 152/2006 e s.m.i., o di parte di essa a determinate condizioni che devono garantire che l'installazione sia conforme ai requisiti di cui al Titolo III-bis della Parte Seconda del D.Lgs. 152/2006 e s.m.i..

Ambiente: contesto nel quale un'organizzazione opera, comprendente l'aria, l'acqua, il terreno, le risorse naturali, la flora, la fauna, gli esseri umani e le loro interrelazioni.

Aspetto ambientale: elemento delle attività, dei prodotti o dei servizi di un'organizzazione che interagisce o può interagire con l'ambiente.

BAT (Best Available Techniques): migliori tecniche disponibili ovvero le tecniche più efficaci, tra quelle tecnicamente realizzabili ed economicamente sostenibili nell'ambito del relativo comparto industriale, per ottenere un elevato livello di protezione dell'ambiente nel suo complesso.

BOD₅ (biochemical oxygen demand): domanda biochimica di ossigeno, quantità di ossigeno necessaria per la decomposizione ossidata della sostanza organica per un periodo di 5 giorni.

Carbone attivo: carbone finemente attivo caratterizzato da un'elevata superficie di contatto, sulla quale possono essere adsorbite sostanze liquide o gassose.

CO₂ (anidride carbonica): gas presente naturalmente nella atmosfera terrestre in grado di assorbire la radiazione infrarossa proveniente dalla superficie terrestre procurando un riscaldamento dell'atmosfera conosciuto con il nome di effetto serra.

COD (chemical oxygen demand): domanda chimica di ossigeno. Ossigeno richiesto per l'ossidazione di sostanze organiche ed inorganiche presenti in un campione d'acqua.

Compostaggio: processo di decomposizione e di umificazione di un misto di materie organiche da parte di macro e microrganismi in particolari condizioni (T, umidità, quantità d'aria).

CSS (Combustibile Solido Secondario): combustibile solido prodotto da rifiuti che rispetta le caratteristiche di classificazione e di specificazione individuate delle

norme tecniche UNI CEN/TS 15359 e successive modifiche ed integrazioni; fatta salva l'applicazione dell'articolo 184-ter, il combustibile solido secondario, è classificato come rifiuto speciale (Art. 183 cc), D.Lgs. 152/2006 e s.m.i.).

Disoleazione: processo di rottura delle emulsioni oleose. Gli oli sono separati dalle soluzioni acquose con trattamenti singoli o combinati di tipo fisico, chimico e meccanico.

EER (Elenco Europeo Rifiuti): catalogo nel quale sono identificati tramite un codice tutti i rifiuti, istituito con la decisione 2000/532/CE e s.m.i. e riprodotto anche nell'Allegato D alla Parte Quarta del D.Lgs. 152/06 e s.m.i.. Ogni singolo rifiuto è identificato attraverso un codice numerico univoco a sei cifre.

Effetto serra: fenomeno naturale di riscaldamento dell'atmosfera e della superficie terrestre procurato dai gas naturalmente presenti nell'atmosfera come anidride carbonica, vapore acqueo e metano.

Elettrofiltro: sistema di abbattimento delle polveri dalle emissioni per precipitazione elettrostatica. Le polveri, caricate elettricamente, sono raccolte sugli elettrodi del filtro e rimosse, successivamente, per battitura o scorrimento di acqua.

Filtro a manica: apparecchiatura utilizzata per la depolverazione degli effluenti gassosi, costituita da cilindri di tessuto aperti da un lato.

Filtropressatura: processo di ispessimento e disidratazione dei fanghi realizzato per aggiunta di reattivi chimici.

Gruppo elettrogeno: sistema a motore in grado di produrre energia elettrica, in genere utilizzato in situazioni di assenza di corrente elettrica di rete.

Impatto ambientale: modificazione dell'ambiente, negativa o benefica, causata totalmente o parzialmente dagli aspetti ambientali di un'organizzazione.

IPPC (Integrated Pollution Prevention and Control): "prevenzione e riduzione integrata dell'inquinamento" introdotta dalla Direttiva Comunitaria 96/61/CE sostituita dalla direttiva 2008/1/CE e, successivamente, dalla direttiva 2010/75/CE. La normativa nazionale di recepimento della direttiva IPPC è il D.Lgs. 152/06 e s.m.i. che disciplina il rilascio, l'aggiornamento ed il riesame dell'AIA.

ISO (International Organization for Standardization): Istituto internazionale di normazione che emana standard validi in campo internazionale.

Jar test: test su uno specifico trattamento chimico per impianti di trattamento acque/reflui effettuato in impianto pilota in scala.

PCI (Potere Calorifico Inferiore): quantità di calore, espressa in grandi calorie, che si sviluppa dalla combustione completa di un chilogrammo di combustibile, senza considerare il calore prodotto dalla condensazione del vapore d'acqua.

Piattaforma ecologica: Impianto di stoccaggio e trattamento dei materiali della raccolta differenziata; da tale piattaforma escono i materiali per essere avviati al riciclaggio, al recupero energetico ovvero, limitatamente alle frazioni di scarto, allo smaltimento finale.

Prestazione ambientale: risultati misurabili della gestione dei propri aspetti ambientali da parte dell'organizzazione.

Polverino: polveri raccolte dall'elettrofiltro.

Processo aerobico: reazione che avviene in presenza di ossigeno.

Processo anaerobico: reazione che avviene in assenza di ossigeno.

Processo di biostabilizzazione: processo aerobico controllato di ossidazione di biomasse che determina una stabilizzazione (perdita di fermentescibilità) mediante la mineralizzazione delle componenti organiche più aggredibili.

Reagente: sostanza che prende parte ad una reazione.

Recupero: qualsiasi operazione il cui principale risultato sia di permettere ai rifiuti di svolgere un ruolo utile, sostituendo altri materiali che sarebbero stati altrimenti utilizzati per assolvere una particolare funzione o di prepararli ad assolvere tale funzione (Art. 183 t), D.Lgs. 152/2006 e s.m.i.).

Reg. CE 1221/2009 (EMAS): Regolamento europeo che istituisce un sistema comunitario di ecogestione e audit (eco management and audit scheme, EMAS), al quale possono aderire volontariamente le organizzazioni, per valutare e migliorare le proprie prestazioni ambientali e fornire al pubblico e ad altri soggetti interessati informazioni pertinenti.

Rifiuto: qualsiasi sostanza od oggetto di cui il detentore si disfi o abbia l'intenzione o abbia l'obbligo di disfarsi (Art. 183, 1. a), D.Lgs. 152/2006 e s.m.i.).

Rifiuto pericoloso: rifiuto che presenta una o più caratteristiche di cui all'Allegato I della Parte Quarta del D.Lgs. 152/2006 e s.m.i. (Art. 183, 1. b).

Rifiuti speciali: rifiuti provenienti da attività agricole e agro-industriali, da attività di demolizione e costruzione, da lavorazioni industriali, da lavorazioni artigianali, da attività commerciali, da attività di servizio, da attività di recupero e smaltimento di rifiuti, da attività sanitarie, i veicoli fuori uso (Art. 184, 3), D.Lgs. 152/2006 e s.m.i.).

Rifiuti urbani: rifiuti domestici indifferenziati e da raccolta differenziata, rifiuti indifferenziati e da raccolta differenziata provenienti da altre fonti indicati nell'allegato L-quater prodotti dalle attività riportate nell'allegato L-quinquies, rifiuti di qualunque natura o provenienza, giacenti sulle strade ed aree pubbliche, rifiuti provenienti dallo spazzamento delle strade, rifiuti della manutenzione del verde pubblico, rifiuti provenienti da attività cimiteriale (Art. 183, 1.b-ter), D.Lgs. 152/2006 e s.m.i).

SCR (Selective Catalytic Reduction): riduzione Catalitica Selettiva degli Ossidi di Azoto.

SCNR (Selective Non-Catalytic Reduction): riduzione non-Catalitica Selettiva degli Ossidi di Azoto.

Scorie (da combustione): residuo solido derivante dalla combustione di un materiale ad elevato contenuto di inerti (frazione incombustibile).

Sistema gestione ambientale (SGA): parte del sistema di gestione utilizzata per sviluppare ed attuare la propria politica ambientale e gestire i propri aspetti ambientali.

Sovvallo: residuo delle operazioni di selezione e trattamento dei rifiuti.

Sostanze ozonolesive: sostanze in grado di attivare i processi di deplezione dell'ozono stratosferico.

Stoccaggio: attività di smaltimento consistenti nelle operazioni di deposito preliminare di rifiuti e le attività di recupero consistenti nelle operazioni di messa in riserva di rifiuti (Art. 183 1. aa), D.Lgs. 152/2006).

Sviluppo sostenibile: principio introdotto nell'ambito della Conferenza dell'O.N.U. su Ambiente e Sviluppo svoltasi a Rio de Janeiro nel giugno 1992, che auspica forme di sviluppo industriale, infrastrutturale, economico, ecc., di un territorio, in un'ottica di rispetto dell'ambiente e di risparmio delle risorse ambientali.

TEP (Tonnellate equivalenti di petrolio): unità di misura delle fonti di energia: 1 TEP equivale a 10 milioni di kcal ed è pari all'energia ottenuta dalla combustione di una tonnellata di petrolio.

UNI EN ISO 14001:2015: versione in lingua italiana della norma europea EN ISO 14001. Norma che certifica i sistemi di gestione ambientale che dovrebbero consentire a un'organizzazione di formulare una politica ambientale, tenendo conto degli aspetti legislativi e degli impatti ambientali significativi. La norma sostituisce la UNI EN ISO 14001:2004.

UNI EN ISO 9001:2015: versione in lingua italiana della norma europea EN ISO 9001. Norma che specifica i requisiti di un modello di sistema di gestione per la qualità per tutte le organizzazioni, indipendentemente dal tipo e dimensione delle stesse e dai prodotti forniti. Essa può essere utilizzata per uso interno, per scopi contrattuali e di certificazione. La norma sostituisce la UNI EN ISO 9001:2008.

UNI CEI EN ISO 50001:2011: versione in lingua italiana della norma europea EN ISO 50001. Norma che specifica i requisiti per creare, implementare e mantenere un sistema di gestione dell'energia che consente ad un'organizzazione di perseguire il miglioramento continuo della propria prestazione energetica, comprendendo in questa l'efficienza energetica nonché il consumo e l'uso di energia.

UNI ISO 45001:2018: versione in lingua italiana della norma internazionale ISO 45001 che definisce i requisiti di un sistema di gestione per la salute e sicurezza sul lavoro, secondo quanto previsto dalle normative vigenti e in base ai pericoli e rischi potenzialmente presenti sul luogo di lavoro.

ABBREVIAZIONI

ΑT	Alta Tensione	MT	Media Tensione
ВТ	Bassa Tensione	PCI	Potere Calorifico Inferiore
CPI	Certificato Prevenzione Incendi	SCIA	Segnalazione Certificata di Inizio Attività ai fini
CTR	Comitato Tecnico Regionale		della sicurezza antincendio
DPI	Dispositivi di Protezione Individuale	SIC	Siti di Importanza Comunitaria
Leq	Media del livello sonoro sul periodo di tempo T	SME	Sistema di Monitoraggio in continuo delle
	considerato		Emissioni
MPS	Materie Prime Secondarie	ZPS	Zone di Protezione Speciale

FATTORI DI CONVERSIONE

Energia elettrica: 1 MWh $_{e}$ = 0,187 tep Gas di petrolio liquefatti (GPL): 1 l = 0,56 kg Energia termica: 1 MWh $_{t}$ = 0,103 tep Gas di petrolio liquefatti (GPL): 1 t = 1,1 tep Energia: 1 Kcal/Nm 3 = 4,1868 KJ/Nm 3 Gasolio: 1 l = 0,84 kg Gas naturale: 1.000 Sm 3 = 0,836 tep Gasolio: 1 t = 1,02 tep

GRANDEZZA	UNITÁ	SIMBOLO
Area	kilometro quadrato	Km ²
Carica batterica	Unità formanti colonie / 100 millilitri	Ufc/100 ml
Energia	tonnellate equivalenti petrolio	tep
Potenza * tempo	kiloWatt * ora	kWh
Potenza * tempo	MegaWatt * ora	MWh
Livello di rumore	Decibel riferiti alla curva di ponderazione del tipo A	dB(A)
Peso	tonnellata	t/tonn
Portata	metro cubo / secondo	m³/s
Potenziale elettrico, tensione	volt	V
Potere Calorifico Inferiore	kilocalorie/chilo	kcal/kg
Velocità	metro / secondo	m/s
Volume	metro cubo	m^3
Volume (p=1atm; T = 0°C)	Normal metro cubo	Nm³
Volume (p=1atm; T = 15°C)	Standard metro cubo	Sm3

INFORMAZIONI UTILI SUI DATI

Fonte dati

Tutti i dati inseriti nella Dichiarazione Ambientale sono ripercorribili su documenti ufficiali (es. certificati analitici, bollette, fatture, dichiarazioni PRTR, Registri di Carico/Scarico, Registri UTF).

Gestione dei dati inferiori al limite di rilevabilità

Se nel periodo di riferimento uno dei valori rilevati risulta inferiore al limite di rilevabilità, per il calcolo della media è utilizzata la metà del limite stesso. Nel caso in cui tutti i valori risultino inferiori al limite di rilevabilità è inserito il suddetto valore nella casella relativa alla media. Se sono presenti limiti di rilevabilità diversi è inserito il meno accurato.

Relazioni con limiti o livelli di guardia

I limiti di legge ed i livelli di guardia si riferiscono ad analisi o rilevazioni puntuali.

Considerata la molteplicità dei dati a disposizione per anno, per questioni di semplificazione espositiva, si è adottata la scelta di confrontare le medie annue con i suddetti limiti.

ALLEGATO 1 – PRINCIPALE NORMATIVA APPLICABILE

Da tenere presente che spesso gli impianti sono soggetti a prescrizioni più restrittive rispetto alla normativa di settore e quindi l'elemento fondamentale diventa l'Autorizzazione Integrata Ambientale, l'Autorizzazione Unica Ambientale o le Autorizzazioni settoriali.

DPCM del 01/03/1991 "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno".

Direttiva 92/43/CE del 21/05/1992 "Relativa alla conservazione degli habitat naturali e seminaturali e della flora e della fauna selvatiche".

Legge n. 447 del 26/10/1995 "Legge quadro sull'inquinamento acustico".

Decreto legislativo n. 209 del 22/05/1999 e s.m.i. "Attuazione della direttiva 96/59/CE relativa allo smaltimento dei policlorodifenili (PCB) e dei policlorotrifenili (PCT)".

Decreto Legislativo n. 231 del 08/06/2001 e s.m.i. "Disciplina della responsabilità amministrativa delle persone giuridiche, delle società e delle associazioni anche prive di personalità giuridica, a norma dell'art. 11 della legge 29 settembre 2000, n. 300".

Decreto Legislativo n. 36 del 13/01/2003 e s.m.i. "Attuazione della direttiva 1999/31/CE, relativa alle discariche di rifiuti". **L.R. 19 Emilia-Romagna del 29 settembre 2003** "Norme in materia di riduzione dell'Inquinamento Luminoso e di risparmio energetico" e successiva Direttiva di Giunta Regionale n. 1732 del 12 novembre 2015 "TERZA direttiva per l'applicazione dell'art.2 della Legge Regionale n. 19/2003".

Decreto Legislativo n. 387 del 29/12/2003 e s.m.i. "Attuazione della Direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità".

Decreto Ministeriale n. 248 del 29/07/2004 "Regolamento relativo alla determinazione e disciplina delle attività di recupero di prodotti e beni di amianto e contenenti amianto".

Regolamento (CE) n. 166 del 18/01/2006 e s.m.i. "Regolamento del Parlamento Europeo e del Consiglio relativo all'istituzione di un registro europeo delle emissioni e dei trasferimenti di sostanze inquinanti che modifica le direttive 91/689/CEE e 96/61/CE del Consiglio".

DPR n. 147 del 15/02/2006 "Regolamento per il controllo e il recupero delle fughe di sostanze lesive della fascia di ozono da apparecchiature di refrigerazione e di condizionamento d'aria e pompe di calore".

Decreto Legislativo n. 152 del 03/04/2006 e s.m.i. "Norme in materia ambientale".

Regolamento (CE) n. 1907 del 18/12/2006 "Regolamento del Parlamento Europeo e del Consiglio concernente la registrazione, la valutazione, l'autorizzazione e la restrizione delle sostanze chimiche (REACH), che istituisce un'Agenzia europea per le sostanze chimiche, che modifica la direttiva 1999/45/CE e che abroga il regolamento (CEE) n. 793/93 del Consiglio e il regolamento (CE) n. 1488/94 della Commissione, nonché la direttiva 76/769/CEE del Consiglio e le direttive della Commissione 91/155/CEE, 93/67/CEE, 93/105/CE e 2000/21/CE".

Decreto Ministeriale del 29/01/2007 "Emanazione di linee guida per l'individuazione e l'utilizzazione delle migliori tecniche disponibili in materia di gestione dei rifiuti, per le attività elencate nell'allegato I del Decreto Legislativo n. 59 del 18/2/2005".

Decreto Legislativo n. 81 del 09/04/08 e s.m.i. "Testo Unico sulla salute e sicurezza sul lavoro".

Regolamento (CE) n. 1272 del 16/12/2008 (CLP) e s.m.i. "Regolamento del Parlamento Europeo e del Consiglio relativo alla classificazione, all'etichettatura e all'imballaggio delle sostanze e delle miscele che modifica e abroga le direttive 67/548/CEE e 1999/45/CE e che reca modifica al regolamento (CE) n. 1907/2006".

Decreto Ministeriale del 18/12/2008 "Incentivazione della produzione di energia elettrica da fonti rinnovabili, ai sensi dell'articolo 2, comma 150 della Legge 24/12/2007".

Regolamento (CE) n. 1005 del 16/09/2009 "Regolamento del Parlamento Europeo e del Consiglio sulle sostanze che riducono lo strato di ozono".

Decreto Legislativo n. 75 del 29/04/2010 e s.m.i. "Riordino e revisione della disciplina in materia di fertilizzanti, a norma dell'articolo 13 della legge 7 luglio 2009, n. 88".

DPR 151 del 01/08/2011 e s.m.i. "Regolamento recante semplificazione della disciplina dei procedimenti relativi alla prevenzione incendi, concernente la determinazione delle attività soggette alle visite di prevenzione incendi".

Decreto Ministeriale del 06/07/2012 e s.m.i. "Attuazione dell'art. 24 del decreto legislativo 3 marzo 2011, n. 28, recante incentivazione della produzione di energia elettrica da impianti a fonti rinnovabili diversi dai fotovoltaici".

DPR n. 74 del 16/04/2013 "Definizione dei criteri generali in materia di esercizio, conduzione controllo e manutenzione degli impianti termici per la climatizzazione invernale ed estiva degli edifici e per la preparazione di acqua calda per usi igienico sanitari".

Decreto Legislativo n. 46 del 04/03/2014 "Emissioni industriali (prevenzione e riduzione integrate dall'inquinamento) – Attuazione direttiva 2010/75/UE – Modifiche alle Parti II, III, IV e V del D.Lgs 152/2006 ("Codice ambientale").

Regolamento (UE) n. 517 del 16/04/2014 "Regolamento del Parlamento europeo e del Consiglio sui gas fluorurati a effetto serra e che abroga il regolamento (CE) n. 842/2006".

Decreto Legislativo n. 102 del 04/07/2014 "Attuazione della direttiva 2012/27/UE sull'efficienza energetica, che modifica le direttive 2009/125/CE e 2010/30/UE e abroga le direttive 2004/8/CE e 2006/32/CE".

Circolare Ministero dello Sviluppo Economico del 18/12/2014 "Nomina del responsabile per la conservazione e l'uso razionale dell'energia di cui all'art. 19 della legge 9 gennaio 1991 n. 10 e all'articolo 7 comma 1, lettera e) del decreto ministeriale 28 dicembre 2012".

Legge n. 68 del 22/05/2015 "Disposizioni in materia di delitti contro l'ambiente".

Decreto Legislativo n. 105 del 26/06/2015 "Attuazione della direttiva 12/18/UE relativa al controllo del pericolo di incidenti rilevanti connessi con sostanze pericolose".

Decreto Ministeriale n. 134 del 19/05/2016 "Regolamento concernente l'applicazione del fattore climatico (CFF) alla formula per l'efficienza del recupero energetico dei rifiuti negli impianti di incenerimento".

Decreto Legislativo n. 183 del 15/11/2017 "Limiti alle emissioni in atmosfera degli impianti di combustione medi – Riordino della disciplina delle autorizzazioni alle emissioni in atmosfera di cui alla Parte Quinta del D. Lgs. 152/2006 – Attuazione direttiva 2015/2193/Ue".

Legge n. 167 del 20/11/2017 "Legge europea - Disposizioni in materia di tutela delle acque, emissioni inceneritori rifiuti, energie rinnovabili, sanzioni per violazione regolamento "Clp" su classificazione sostanze e miscele".

Decisione Commissione Ue n. 2018/1147/Ue del 10/08/2018 "Emissioni industriali – Adozione conclusioni sulle migliori tecniche disponibili (Bat) per le attività di trattamento dei rifiuti – Direttiva 2010/75/Ue".

DPR n. 146 del 16/11/2018 "Regolamento di esecuzione del regolamento (UE) n. 517/2014 sui gas fluorurati a effetto serra".

Circolare MinAmbiente n. 1121 del 21/01/2019 "Linee guida per la gestione operativa degli stoccaggi negli impianti di gestione dei rifiuti e per la prevenzione dei rischi - Sostituzione circolare 4064/2018".

Legge n. 12 del 11/02/2019 "Conversione in legge, con modificazioni, del decreto-legge 14 dicembre 2018, n. 135, recante disposizioni urgenti in materia di sostegno e semplificazione per le imprese e per la pubblica amministrazione".

D.M. n. 95 del 15/04/2019 Regolamento recante le modalità per la redazione della relazione di riferimento di cui all'articolo 5, comma 1, lettera v-bis) del decreto legislativo 3 aprile 2006, n. 152.

Decisione di esecuzione (UE) 2019/2010 della Commissione del 12/11/2019 che stabilisce le conclusioni sulle migliori tecniche disponibili (BAT) a norma della direttiva 2010/75/UE del Parlamento europeo e del Consiglio per l'incenerimento dei rifiuti.

Legge n. 128 del 02/11/2019 "Conversione in legge, con modificazioni, del decreto-legge 3 settembre 2019, n. 101, recante disposizioni urgenti per la tutela del lavoro e per la risoluzione di crisi aziendali".

Delibera Consiglio nazionale Snpa n. 61 del 27/11/2019 Approvazione del manuale "Linee guida sulla classificazione dei rifiuti"

Decreto Legislativo n. 163 del 05/12/2019 "Disciplina sanzionatoria per la violazione delle disposizioni di cui al regolamento (UE) n. 517/2014 sui gas fluorurati a effetto serra e che abroga il regolamento (CE) n. 842/2006".

Decreto Legislativo n. 116 del 03/09/2020 "Attuazione della direttiva (UE) 2018/851 che modifica la direttiva 2008/98/CE relativa ai rifiuti e attuazione della direttiva (UE) 2018/852 che modifica la direttiva 1994/62/CE sugli imballaggi e i rifiuti di imballaggio".

Decreto Legislativo n. 118 del 03/09/2020 "Attuazione degli articoli 2 e 3 della direttiva (UE) 2018/849, che modificano le direttive 2006/66/CE relative a pile e accumulatori e ai rifiuti di pile e accumulatori e 2012/19/UE sui rifiuti di apparecchiature elettriche ed elettroniche".

Decreto Legislativo n. 121 del 03/09/2020 "Attuazione della direttiva (UE) 2018/850, che modifica la direttiva 1999/31/CE relativa alle discariche di rifiuti".

Decreto direttoriale Mite n. 47 del 9 agosto 2021 Approvazione delle Linee guida sulla classificazione dei rifiuti di cui alla delibera del Consiglio del Sistema nazionale per la protezione dell'Ambiente del 18 maggio 2021 n. 105.

Legge n.108 del 29/07/2021 "Conversione in legge, con modificazioni, del Decreto-Legge 31 maggio 2021, n.77, recante governance del Piano nazionale di ripresa e resilienza e prime misure di rafforzamento delle strutture amministrative e di accelerazione e snellimento delle procedure".

D.M. 26 luglio 2022 "Approvazione di norme tecniche di prevenzione incendi per gli stabilimenti ed impianti di stoccaggio e trattamento rifiuti."

D.M. n. 152 del 27/09/2022 "Regolamento che disciplina la cessazione della qualifica di rifiuto dei rifiuti inerti da costruzione e demolizione e di altri rifiuti inerti di origine minerale, ai sensi dell'articolo 184-ter, comma 2, del Decreto Legislativo 3 aprile 2006, n. 152."

D.M. n. 59 del 04/04/2023 "Disciplina del sistema di tracciabilità dei rifiuti e del registro elettronico nazionale per la tracciabilità dei rifiuti ai sensi dell'articolo 188-bis del decreto legislativo 3 aprile 2006, n. 152".

ALLEGATO 2 – COMPLESSI IMPIANTISTICI REGISTRATI EMAS

Sito	Impianti presenti	Data registrazione	N° registrazione
Complesso impiantistico di Via Bocche 20, Baricella (BO)	- Discarica	09/04/2002	IT-000085
Complesso impiantistico di Via Diana 44, Ferrara (FE)	- Termovalorizzatore	07/10/2004	IT-000247
Complesso impiantistico di Via Raibano 32, Coriano (RN)	- Termovalorizzatore - Attività di trasbordo - Impianto di selezione e recupero	03/10/2007	IT-000723
Complesso impiantistico di Via Shakespeare 29, Bologna (BO)	- Chimico-fisico	12/06/2009	IT-001111
Complesso impiantistico S.S. Romea Km 2,6 n° 272, Ravenna (RA)	 Chimico-fisico Discariche Imp. Disidratazione fanghi – Disidrat Impianti di produzione di energia elettrica da biogas 	16/05/2008	IT-000879
Complesso impiantistico di Via Pediano 52, Imola (BO)	DiscaricaImpianto trattamento meccanico biologicoImpianti produzione di energia elettrica da biogas	20/10/2008	IT-000983
Complesso impiantistico di Via Traversagno 30, Località Voltana, Lugo (RA)	- Discarica - Impianto di compostaggio e digestore anaerobico - Impianto selezione e recupero	12/06/2009	IT-001116
Complesso impiantistico di Via Rio della Busca, Località Tessello, San Carlo (FC)	 Discarica Impianto di compostaggio e digestore anaerobico Impianti di produzione di energia elettrica da biogas 	12/06/2009	IT-001117
Complesso impiantistico di Via Tomba 25, Lugo (RA)	- Chimico-fisico	23/10/2009	IT-001169
Complesso impiantistico di Via San Martino in Venti 19, Cà Baldacci Rimini (RN)	- Impianto di compostaggio e digestore anaerobico	12/12/2011	IT-001396
Complesso impiantistico di Via Baiona 182, Ravenna (RA)	 Inceneritore con recupero energetico Inceneritore di sfiati non contenenti cloro Chimico-fisico e biologico di reflui industriali e rifiuti liquidi 	28/04/2011	IT-001324
Complesso impiantistico di Via Grigioni 19- 28, Forlì (FC)	- Termovalorizzatore - Attività di trasbordo - Piattaforma ecologica	12/12/2011	IT-001398
Complesso impiantistico di Via Cavazza 45, Modena (MO)	- Termovalorizzatore - Chimico-fisico	22/10/2012	IT-001492
Complesso impiantistico di Via dell'energia, Zona Industriale di Pozzilli (IS)	- Termovalorizzatore	20/11/2009	IT-001201
Complesso impiantistico di Via Selice 12/A – Mordano (BO)	- Impianto selezione e recupero	27/02/2009	IT-001070
Complesso impiantistico di Via Caruso 150 – Modena (MO)	- Impianto selezione e recupero	04/04/2012	IT-001436
Complesso di Via Finati 41/43 Ferrara	- Impianto selezione e recupero	04/10/2011	IT-001378
Complesso impiantistico di Via del Frullo 3/F Granarolo dell'Emilia (BO)	- Impianto selezione e recupero	28/05/2015	IT-001709
Complesso impiantistico Località Cà dei Ladri 25, Silla di Gaggio Montano (BO)	 Discarica Impianto di produzione di energia elettrica da biogas 	13/09/2011	IT-001375
Complesso impiantistico di Via Gabbellini snc, Serravalle Pistoiese (PT)	- Discarica - Chimico-fisico e biologico	03/10/2007	IT-000715
Complesso impiantistico di Via T. Tasso 21/23 Castiglione delle Stiviere (MN)	- Impianto selezione e recupero	21/01/2021	IT-002044
Complesso impiantistico di Sant'Agata Bolognese (BO)	 Impianto di compostaggio e digestione anaerobica con produzione di biometano Discarica 	25/10/2022	IT-002179

RIFERIMENTI PER IL PUBBLICO

HERA SPA

Sede legale: Viale Berti Pichat 2/4

40127 Bologna www.gruppohera.it

Presidente: Cristian Fabbri

Amministratore Delegato: Orazio Iacono

HERAMBIENTE SPA

Sede legale: Viale Berti Pichat 2/4

40127 Bologna

Presidente: Filippo Brandolini

Amministratore Delegato: Andrea Ramonda

Responsabile QSA: Nicoletta Lorenzi

<u>Responsabile Direzione Produzione</u>: Paolo Cecchin <u>Responsabile Direzione Mercato Utilities</u>: Fabrizio Salieri

<u>Responsabile BU Discariche:</u> Michele Menichetti Responsabile BU Termovalorizzatori: Stefano Tondini

Responsabile BU Impianti Rifiuti Industriali: a.i. Roberto Boschi

Coordinamento progetto e realizzazione:

Responsabile Sistemi di Gestione Integrati: Francesca Ramberti

Realizzazione:

- Presidio QSA: Nicoletta Fabbroni
- Responsabile Discariche Operative Ravenna: Marco Vivenza
- Responsabile Chimico-fisico e Disidrat: Davide Ricci Maccarini
- Responsabile Termovalorizzatore Forlì: Giancarlo Ricci

Supporto alla fase di realizzazione: Chiara Esposito, Giovanni Lombardi, Chiara Ragazzini, Nuria Subirà Berini, Elisa Andraghetti (ZGA S.r.l.), Valeria Casta (ZGA S.r.l.)

Si ringraziano tutti i colleghi per la cortese collaborazione.

Per informazioni rivolgersi a:

Responsabile Sistemi di Gestione Integrati

Francesca Ramberti

e-mail: qsa.herambiente@gruppohera.it

La prossima dichiarazione sarà predisposta e convalidata entro tre anni dalla presente. Annualmente verranno predisposti e convalidati (da parte di un verificatore accreditato) gli aggiornamenti della Dichiarazione Ambientale, che conterranno i dati ambientali relativi all'anno di riferimento e il grado di raggiungimento degli obiettivi prefissati.

Informazioni relative alla Dichiarazione Ambientale:

Dichiarazione di riferimento	Data di convalida dell'Ente Verificatore	Verificatore ambientale accreditato e n° accreditamento
Complesso Impiantistico S.S. Romea km 2,6 n. 272, Ravenna	10/05/2024	BUREAU VERITAS ITALIA S.p.A. N° IT-V-0006 Viale Monza 347 – 20126 Milano (MI)