COMPLESSO IMPIANTISTICO Via dell'Energia Pozzilli (IS)

Rev. 0 del 20/05/2025

DATI AGGIORNATI AL 31/12/2024

Il presente documento costituisce il **primo aggiornamento del quinto rinnovo** della Dichiarazione Ambientale attinente al "Complesso impiantistico di via dell'Energia, Pozzilli (IS)", convalidata secondo il Regolamento (CE) 1221/2009 EMAS e successive modifiche, relativa alla registrazione **n. IT-001201**.

L'oggetto della registrazione EMAS comprende il **termovalorizzatore** e tutte le attività ad esso pertinenti gestite da **Herambiente Spa**.

La Dichiarazione ambientale redatta in conformità ai requisiti del Regolamento CE n. 1221/2009 del 25/11/2009 "EMAS III" e successive modifiche si compone di due parti:

- ⇒ **Parte Generale** contenente le informazioni attinenti all'Organizzazione, alla politica ambientale ed al sistema di gestione integrato.
- ⇒ **Parte Specifica** relativa al singolo sito, nella quale si presentano i dati quantitativi e gli indicatori delle prestazioni ambientali riferiti all'ultimo triennio.

Complesso impiantistico

Termovalorizzatore Pozzilli (IS) Via dell'Energia

Attività svolte nel sito

Termovalorizzazione di rifiuti

Codice NACE

38.21 "Trattamento e smaltimento dei rifiuti"

35.11 "Produzione di energia elettrica"

SOMMARIO

HE	RAMBIE	NTE	5
1	LA POI	LITICA DEL GRUPPO HERA	5
2	LA POI	LITICA DEL GRUPPO HERAMBIENTE	7
3		VERNANCE	
4		RUTTURA ORGANIZZATIVA	
5	LA STR	ATEGIA GESTIONALE DI HERAMBIENTE	.13
6	IL SIST	EMA DI GESTIONE INTEGRATO	.13
	6.1 La	ı valutazione degli aspetti ambientali	.15
7	GLI INI	DICATORI AMBIENTALI	.16
8		MUNICAZIONE	
9		MPLESSO IMPIANTISTICO	
		enni storici	
		ontesto territoriale	
		rganizzazione del complesso	
		fiuti in ingresso	
	-	uadro autorizzativo	
10		CLO PRODUTTIVO	
	10.1	Conferimento rifiuti	_
	10.2	Deposito preliminare rifiuti	
	10.3	Combustione	
	10.4	Depurazione fumi	
	10.5	Produzione di energia	
	10.6	Impianto di demineralizzazione	
	10.7	Sezione di trattamento delle scorie	
11		TIONE ANOMALIE ED EMERGENZE	
12		ETTI AMBIENTALI DIRETTI	
	12.1	Energia	
	12.2	Consumi idrici	
	12.3	Scarichi idrici	
	12.4	Suolo e sottosuolo	
	12.5	Emissioni in atmosfera	
	12.5.1	Emissioni convogliate	
	12.5.2 12.5.3	Emissioni diffuse Emissioni ad effetto serra	
	12.5.3	Generazione odori	
	12.7	Consumo di risorse naturali e prodotti chimici	
	12.7	Rumore	
	12.8	Rifiuti in uscita	
	12.10	Amianto	
	12.10	Pcb e pct	
		Gas refrigeranti	
	12.12	Inquinamento luminoso	
	12.13	Impatto visivo e biodiversità	
	12.14	Radiazioni ionizzanti e non	
	12.15	Rischio incidente rilevante	
	TC.TO	NISCHIO HIGIACITE HIEVAITE	. U

12.17 Rischio incendio	46
13 ASPETTI AMBIENTALI INDIRETTI	47
14 OBIETTIVI, TRAGUARDI E PROGRAMMA AMBIENTALE	48
GLOSSARIO	
ALLEGATO 1 – PRINCIPALE NORMATIVA APPLICABILE	
ALLEGATO 2 – COMPLESSI IMPIANTISTICI REGISTRATI EMAS	
RIFERIMENTI PER IL PUBBLICO	

HERAMBIENTE

Leader nazionale nella gestione responsabile dei rifiuti, recupero di energia e materia, Herambiente nasce nel 2009 dalla volontà di concentrare l'esclusivo expertise e la ricca dotazione impiantistica del Gruppo Hera in una nuova società in grado di cogliere le prospettive di sviluppo del settore.

Con una storia fatta di innovazione, tecnologia, efficienza, responsabilità e tutela dell'ambiente, Herambiente fornisce un servizio integrato per tutte le tipologie di rifiuti, facendosi carico dell'intera filiera, e opera sul mercato nazionale e internazionale, rappresentando un benchmark di riferimento europeo.

È in questo contesto, dove i temi dell'economia circolare e della gestione responsabile dei rifiuti sono cruciali, che il progetto EMAS ha trovato la sua piena espressione con l'ottica di promuovere il miglioramento continuo delle proprie prestazioni ambientali e il dialogo con il pubblico e le parti interessate per comunicare in modo trasparente i propri impegni per lo sviluppo sostenibile.

LA NOSTRA MISSION

OFFRIRE SOLUZIONI
SOSTENIBILI E INNOVATIVE
NELLA GESTIONE
INTEGRATA DEI RIFIUTI,
RISPONDENDO ALLE SFIDE
DEL FUTURO DI AZIENDE E
COMUNITÀ CREANDO
VALORE E NUOVE RISORSE

1 LA POLITICA DEL GRUPPO HERA

Hera vuole essere la migliore multiutility italiana per i suoi clienti, i lavoratori e gli azionisti, attraverso l'ulteriore sviluppo di un originale modello di impresa capace di innovazione e di forte radicamento territoriale, nel rispetto dell'ambiente.

I Valori di Hera sono:

- Integrità: un Gruppo di persone corrette e leali.
- ▶ Trasparenza: sinceri e chiari verso tutti gli interlocutori.
- Responsabilità personale: impegnati per il bene dell'azienda insieme.
- Coerenza: fare ciò che diciamo di fare.

POLITICA PER LA QUALITÀ E LA SOSTENIBILITÀ

Gli obiettivi

Il Gruppo Hera attua un modello di impresa con l'obiettivo di creare valore nel lungo termine per i propri azionisti attraverso la creazione di valore condiviso con i propri stakeholder, e persegue una strategia di crescita multibusiness nelle aree dell'Ambiente, Energia e Servizi Idrici, fondata su principi del proprio Codice Etico, volta a una positiva evoluzione del contesto sociale, ambientale ed economico in cui opera.

La presente Politica, in coerenza con lo scopo dello Statuto Sociale, con la Missione, con i valori e la Strategia, definisce gli impegni per una crescita sostenibile nel tempo, monitorati e riesaminati periodicamente misurando gli impatti sociali, ambientali ed economici derivanti dalle proprie attività.

A tal fine il Gruppo Hera organizza e svolge le attività di impresa anche con la finalità di favorire l'equità sociale, il raggiungimento della neutralità di carbonio, la rigenerazione delle risorse e la resilienza del sistema dei servizi gestiti, a beneficio degli stakeholder e dell'ecosistema territoriale di riferimento, per una transizione giusta.

Gli impegni

- ✓ Contribuire al raggiungimento degli Obiettivi pe lo Sviluppo Sostenibile dell'Agenda ONU 2030 prioritari per le proprie attività, promuovendo le "Partnership per gli obiettivi";
- ✓ Adottare i principi dell'Economia Circolare e garantire la resilienza e competitività in una prospettiva di medio-lungo termine, attraverso lo sviluppo di progetti con essi coerenti e la promozione di sinergie industriali;
- ✓ Essere protagonista nel percorso di transizione energetica verso la neutralità di carbonio, attraverso l'adeguamento delle proprie infrastrutture, la promozione dell'energia da fonti rinnovabili, lo sviluppo di

- soluzioni tecnologiche e comportamenti volti alla riduzione delle emissioni di gas climalteranti dirette e indirette;
- ✓ Attuare, nella consapevolezza della centralità del proprio ruolo, azioni concrete orientate alla mitigazione del cambiamento climatico, perseguendo la gestione responsabile delle risorse naturali e l'adozione di soluzioni volte a produrre effetti sociali e ambientali positivi;
- ✓ Incrementare l'efficienza energetica ei propri asset e servizi, e ridurre il proprio impatto ambientale attraverso la progettazione, l'innovazione e l'uso delle migliori tecnologie disponibili, nonché attraverso una gestione volta all'uso razionale dell'energia e delle risorse, anche attraverso l'estensione della vita utile dei propri asset e il riuso del suolo;
- ✓ Analizzare stabilmente le variazioni del contesto d'azione, determinando i rischi e cogliendo le opportunità connesse, per accrescere gli effetti desiderati e prevenire, o ridurre, quelli indesiderati;
- ✓ Riconoscere il top management quale cardine di implementazione della presente Politica all'interno delle strategie di business, per il raggiungimento degli obiettivi definiti, garantendo la disponibilità di informazioni e risorse per raggiungere gli stessi, nonché favorendo la cooperazione tra le unità aziendali per l'adozione di azioni coordinate;
- ✓ Migliorare le condizioni di lavoro dei propri dipendenti, individuando e adottando efficaci misure di
 prevenzione degli infortuni e delle malattie professionali per ridurre al minimo livello possibile i rischi per
 la salute e la sicurezza, nel rispetto delle norme nazionali e sovranazionali applicabili e dei contratti collettivi
 nazionali di lavoro di riferimento;
- ✓ Garantire la salvaguardia e la tutela delle vite umane a fronte di un evento di crisi, nonché la continuità operativa per minimizzare gli impatti ai territori e alle comunità servite, assicurando un rapido ripristino del normale stato di svolgimento delle attività, in particolare per quanto attiene i servizi essenziali e i servizi di pubblica utilità;
- ✓ Garantire un attento e continuo monitoraggio del rispetto della conformità alla legislazione vigente ed ai requisiti applicabili;
- ✓ Garantire la trasparenza in tutti i processi ed incoraggiare la segnalazione di fatti illeciti o anche solo di sospetti in buona fede, assicurando riservatezza o anonimato, entro i limiti previsti dalle norme vigenti, a coloro che effettuano segnalazioni (whistleblowing);
- ✓ Non tollerare alcuna forma di illegalità, corruzione e frode e sanzionare comportamenti illeciti;
- ✓ Promuovere iniziative volte all'eccellenza, al miglioramento continuo dei sistemi di gestione, dei servizi, delle prestazioni e all'agilità dei processi aziendali, nonché alla soddisfazione dei clienti, dei dipendenti e delle comunità in cui opera attraverso la rapidità nel decidere e la flessibilità nell'allocazione delle risorse;
- ✓ Favorire a tutti i livelli dell'organizzazione la crescita della cultura in ambito salute e sicurezza, qualità, sostenibilità, prevenzione della corruzione, economia circolare e continuità operativa, innovazione anche attraverso il coinvolgimento di fornitori, clienti e partners, promuovendo lo sviluppo delle competenze del personale e motivandolo al miglioramento del senso di responsabilità e della consapevolezza del proprio ruolo;
- ✓ Promuovere il coinvolgimento e la partecipazione dei lavoratori e dei loro rappresentanti nell'attuazione, sviluppo e miglioramento continuo del sistema di gestione per la salute e sicurezza;
- ✓ Promuovere l'acquisto di servizi e prodotti efficienti e sostenibili, valutando i propri fornitori anche in considerazione del loro impegno per il rispetto dei principi espressi nella presente Politica;
- ✓ Garantire l'assenza di discriminazione nei confronti di qualsiasi dipendente che fornisca informazioni riguardanti il rispetto dei principi contenuti in questa Politica;
- ✓ Incentivare il dialogo e il confronto con tutte le parti interessate, tenendo conto delle loro istanze e attivando adeguati strumenti di partecipazione e informazione della prospettiva aziendale, allo scopo di creare valore condiviso e di prevenire ogni forma di reato;
- ✓ Rendere noti gli impegni assunti e i risultati raggiunti tramite la pubblicazione annuale del Bilancio di Sostenibilità.

Il Consiglio di Amministrazione di Hera S.p.A., che rappresenta la Capogruppo, riconosce come scelta strategica l'adozione di un sistema di gestione di Gruppo, che copra l'intera catena del valore dei prodotti e dei servizi forniti (produzione, strutture operative, impianti, distribuzione, logistica), compresa la gestione sostenibile delle risorse, l'approvvigionamento da fornitori e prestatori di servizi. Il sistema di gestione è esteso alle joint venture e integrato nel processo di due diligence in caso di fusioni e acquisizioni.

I vertici di Hera S.p.A. e delle Società del Gruppo sono coinvolti nel rispetto e nell'attuazione degli impegni contenuti nella presente Politica assicurando e verificando periodicamente che sia documentata, resa operante, riesaminata, diffusa a tutto il personale e trasparente a tutti gli stakeholders.

Bologna, 23 marzo 2022

Il Presidente Esecutivo

Tomaso Tommasi di Vignano

L'Amministratore Delegato

2 LA POLITICA DEL GRUPPO HERAMBIENTE

POLITICA PER LA QUALITÀ, LA SICUREZZA, L'AMBIENTE E L'ENERGIA

Il Gruppo Herambiente vuole essere la più grande società italiana nel settore del trattamento dei rifiuti. Opera sul mercato nazionale e internazionale e con le sue società tratta tutte le tipologie di rifiuti, urbani e speciali, pericolosi e non, garantendone una gestione efficace. Offre ai clienti servizi ambientali integrati, progetta e realizza bonifiche di siti contaminati e impianti di trattamento, contribuendo alla tutela dell'ambiente e della salute e sicurezza di lavoratori e cittadini.

La dotazione impiantistica si distingue per affidabilità, tecnologie all'avanguardia, elevate performance ambientali con l'obiettivo di perseguire standard di efficienza e redditività, alte percentuali di riciclo e recupero di materia e energia.

La presente politica discende dalla politica del Gruppo Hera e in coerenza con la mission, i valori e la strategia, detta i principi e i comportamenti volti a soddisfare le aspettative degli stakeholder.

In particolare, il Gruppo Herambiente si impegna a rispettare e promuovere quanto di seguito riportato.

Conformità normativa

Herambiente nello svolgimento delle proprie attività si impegna ad operare nel pieno rispetto della normativa comunitaria, nazionale, regionale e volontaria, nonché nel rispetto di accordi e impegni sottoscritti dall'organizzazione con le parti interessate ai fini della tutela dell'ambiente e della salute e sicurezza dei lavoratori. L'azienda rispetta le normative delle nazioni in cui opera applicando inoltre, laddove possibile, standard più elevati.

Sistemi di Gestione

La Direzione adotta quale strumento strategico di sviluppo sostenibile l'applicazione del sistema di gestione integrato "qualità, sicurezza, ambiente e energia". Il Gruppo favorisce la diffusione delle migliori prassi gestionali al proprio interno, includendo anche gli impianti al di fuori del territorio nazionale.

Il miglioramento continuo dei propri processi aziendali è perseguito anche valutando l'adozione di nuovi schemi certificativi pertinenti al business aziendale.

Tutela dell'ambiente

L'impegno alla protezione dell'ambiente e la prevenzione dell'inquinamento si concretizza con una gestione attenta e sostenibile dei processi produttivi e dei servizi erogati, assicurando un puntuale e continuo monitoraggio volto a minimizzare gli impatti ambientali correlati.

Ottimizzazione processi, attività e risorse

Il Gruppo indirizza tutte le società verso un comportamento omogeneo, promuove e razionalizza, laddove possibile, il recupero di risorse naturali, il ricorso all'energia prodotta da fonti rinnovabili, l'efficienza energetica e effettua una gestione delle attività mirata al riciclo e al recupero di materia e energia dai rifiuti.

Sicurezza sul lavoro

Herambiente promuove la sicurezza, la prevenzione e la protezione dei propri lavoratori e dei fornitori che operano per il Gruppo nei luoghi di svolgimento delle attività, garantendo l'adozione di tutte le misure necessarie previste dal sistema di gestione finalizzate alla definizione delle misure di prevenzione, incluse la corretta pianificazione dei lavori, l'adeguata informazione, formazione e addestramento del Personale e la disposizione delle attrezzature necessarie per operare in sicurezza.

L'Azienda persegue la salvaguardia dei lavoratori, delle popolazioni limitrofe e dell'ambiente dai rischi di incidente rilevante, attuando negli impianti produttivi sottoposti a specifica normativa, idonee misure di prevenzione e protezione.

L'Organizzazione diffonde la cultura della responsabilità, della prevenzione e della sicurezza anche attraverso programmi di accrescimento della consapevolezza dei rischi e la promozione di comportamenti responsabili per facilitare il riconoscimento di condizioni non sicure da parte di tutti i soggetti coinvolti, con l'obiettivo di trasformare la sicurezza in un valore personale condiviso, finalizzato al benessere dei lavoratori.

Diffusione della cultura aziendale

Herambiente favorisce il coinvolgimento, la sensibilizzazione e la responsabilizzazione del personale dipendente a tutti i livelli aziendali e dei fornitori sui temi e sugli obiettivi della qualità, dell'ambiente e della sicurezza.

L'azienda sostiene il dialogo e il confronto con tutte le parti interessate, con gli organi di controllo e con le Autorità competenti nell'ottica della massima trasparenza e attiva strumenti di partecipazione e informazione chiara della politica aziendale al fine di crearne un valore condiviso.

Herambiente diffonde un pensiero ambientalmente responsabile, offrendo la possibilità a cittadini e studenti di effettuare visite guidate presso gli impianti, per fornire una visione completa e trasparente del processo di trattamento dei rifiuti e accrescere nelle nuove generazioni la cultura dello sviluppo sostenibile.

Sostiene e partecipa attivamente alle attività di ricerca in collaborazione con le università, gli istituti di ricerca e i partner industriali.

Miglioramento continuo e sostenibilità

L'organizzazione definisce obiettivi di miglioramento delle proprie prestazioni ambientali e energetiche, della qualità dei servizi erogati e della sicurezza, e determina rischi e opportunità che possono impedire o contribuire a raggiungere i traguardi definiti. Herambiente contribuisce alla diffusione di un modello circolare di produzione e consumo, al fine di raggiungere gli obiettivi globali di sostenibilità ambientale, sociale e economica del pianeta, individuando soluzioni tecnologiche innovative. Nell'ottica dell'economia circolare e della sostenibilità, il rifiuto è considerato come una risorsa, da avviare in via prioritaria al recupero di materia e al riciclo finalizzato alla generazione di nuovi prodotti e, laddove non più possibile, destinandolo alla produzione di energia.

La Direzione di Herambiente è coinvolta in prima persona nel rispetto e nell'attuazione di questi principi, assicura e verifica periodicamente che la presente Politica sia documentata, resa operante, mantenuta attiva, diffusa a tutto il personale del Gruppo sul territorio nazionale e internazionale e resa disponibile al pubblico.

Bologna 20/01/2023

Filippo Brandolini

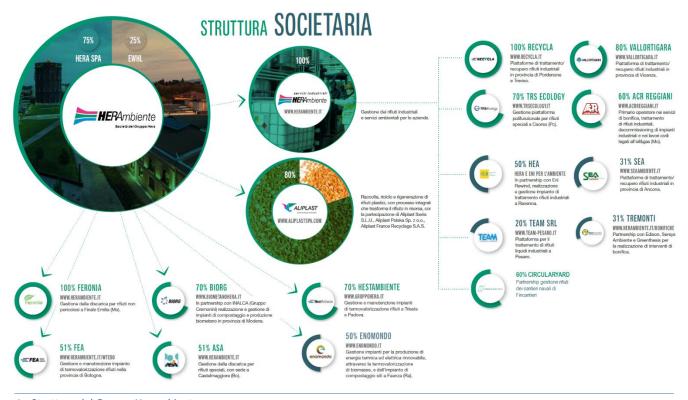
Presidente

Aun from de.

Andrea Ramonda

Amministratore Delegato

Cenni Storici


Il **Gruppo Hera** nasce alla fine del 2002 da una delle più significative operazioni di aggregazione realizzate in Italia nel settore delle "public utilities", diventando una delle principali multiutility nazionali che opera in servizi di primaria importanza, fondamentali a garantire lo sviluppo del territorio e delle comunità servite. A servizio di cittadini e imprese, opera principalmente nei settori ambiente (gestione rifiuti), idrico (acquedotto, fognature e depurazione) ed energia (distribuzione e vendita di energia elettrica, gas e servizi energia) soddisfacendo i bisogni di oltre 4,2 milioni di cittadini in circa 311 comuni distribuiti principalmente in Emilia-Romagna, Friuli-Venezia Giulia, Marche, Toscana e Veneto.

Il **1° luglio 2009**, mediante conferimento del ramo d'azienda di Hera S.p.A. – Divisione Ambiente ed Ecologia Ambiente e contestuale fusione per incorporazione di Recupera S.r.l., nasce **Herambiente S.r.l.** diventata **Herambiente S.p.A.** da ottobre 2010.

3 LA GOVERNANCE

Herambiente, operativa dal 2009, è detenuta al 75% dal Gruppo Hera e per il restante 25% da EWHL European Waste Holdings Limited, una società di diritto inglese, posseduta al 50% da British Infrastructure Fund 3i Managed Infrastructure Acquisitions LP e al 50% dal Dutch Pension Fund Stichting Pensioenfonds ABP.

Per dotazione impiantistica e quantità di rifiuti trattati, Herambiente è il primo operatore nazionale nel recupero e trattamento rifiuti grazie anche al contributo di altre società, che operano sul mercato nazionale e internazionale, nelle quali detiene partecipazioni di controllo, frutto del percorso di ampliamento del proprio perimetro societario avviato dal Gruppo già da diversi anni.

La Struttura del Gruppo Herambiente

Le tappe principali di questo percorso, per citare le più rilevanti, hanno visto: la nascita, nel 2014, della controllata Herambiente Servizi Industriali S.r.l., società commerciale di Herambiente dedicata alla gestione dei rifiuti industriali e dei servizi ambientali collegati, nel 2015, l'acquisizione dell'intera partecipazione della controllata HestAmbiente S.r.l., all'interno della quale sono stati conferiti i termovalorizzatori di Padova e Trieste già di titolarità di AcegasApsAgma, l'acquisizione, avviata nel 2015, dell'intero capitale sociale di Waste Recycling S.p.A., che a partire dal 1° luglio 2019 si è fusa per incorporazione in Herambiente Servizi Industriali

S.r.l, la fusione per incorporazione e l'acquisizione di rami d'azienda di altre società (Akron S.p.A., Romagna Compost S.r.l., Herambiente Recuperi S.r.l., Geo Nova S.p.A.), che hanno ampliato il parco impiantistico di Herambiente. Da citare anche la fusione per incorporazione, nel corso del 2017, di Biogas 2015, che deteneva la titolarità degli impianti di recupero energetico insediati nelle discariche del Gruppo, e l'avvio al processo di acquisizione del capitale sociale di Aliplast S.p.A., operante nella raccolta e nel riciclo di rifiuti di matrice plastica e loro successiva rigenerazione. Il percorso di crescita è continuato con la gestione da parte di Herambiente da luglio 2019, in virtù di concessione decennale, della Discarica Operativa di CO.SE.A. Consorzio a Ca' dei Ladri nel comune di Gaggio Montano e, sempre nello stesso mese, l'acquisizione del 100% di Pistoia Ambiente S.r.l., gestore della discarica di Serravalle Pistoiese e annesso impianto di trattamento rifiuti liquidi, consolidando la propria dotazione impiantistica dedicata alle aziende. Dal 1º luglio 2020 la società Pistoia Ambiente si è fusa per incorporazione in Herambiente. Nel 2021 si è costituita la società Biorg, nata dalla partnership tra Herambiente e la società Inalca (Gruppo Cremonini) leader nella produzione di carni e nella distribuzione di prodotti alimentari, con la finalità di produrre biometano e compost dalla raccolta differenziata dell'organico e dai reflui agroalimentari. Da citare anche la crescita nel mercato dei rifiuti industriali di Herambiente Servizi Industriali S.r.l., con la costituzione insieme a Eni Rewind, nel 2021, di HEA (Hera e Eni per l'ambiente) e con le acquisizioni di tre realtà: l'80% del Gruppo Vallortigara, il 70% (diventato 100%) di Recycla ed il 31% di SEA. Il percorso di crescita è proseguito, a marzo 2023, con l'acquisizione del 60% di ACR Reggiani una delle maggiori realtà italiane nel settore delle bonifiche, trattamento rifiuti industriali, decommissioning di impianti industriali e nei lavori civili legati all'oil&gas, con il successivo conferimento nella nuova società delle attività di bonifica e global services operativo in capo ad HASI e, nel luglio 2024, con l'acquisizione del 70% di TRS Ecology S.r.l. gestore della piattaforma polifunzionale per il trattamento di rifiuti speciali situata a Caorso (PC). Successivamente, Herambiente, dal 1° gennaio 2025, ha assunto la gestione del termovalorizzatore di Montale (PT) di proprietà del Consorzio Intercomunale fra i comuni di Agliana, Montale e Quarrata a seguito di aggiudicazione di gara. In ultimo, a gennaio 2025, tra Fincantieri al 40%, uno dei principali gruppi al mondo nella cantieristica ad alta complessità, e il Gruppo Hera al 60% è stata costituita CircularYard S.r.l., la newco volta a realizzare, negli otto cantieri italiani di Fincantieri, un innovativo sistema integrato di gestione rifiuti, finalizzato anche alla loro valorizzazione in ottica di economia circolare. Il Gruppo Hera sarà presente con HASI al 55% e A.C.R. di Reggiani Albertino S.p.A. con il restante 5%.

4 LA STRUTTURA ORGANIZZATIVA

Herambiente, con i suoi 759 dipendenti, ha la responsabilità di gestire tutte le attività operative, commerciali e amministrative degli impianti di gestione rifiuti, con l'obiettivo di razionalizzare gli interventi e perseguire standard di efficienza e redditività, coordinando, inoltre, le attività delle società controllate.

La macrostruttura della società è di tipo funzionale e si compone di una **Direzione generale** che traccia le linee strategiche e guida l'organizzazione di cinque **funzioni di staff** e di due grandi **funzioni di line**. Fanno capo ad Herambiente le società controllate: Herambiente Servizi Industriali con le sue Controllate, Aliplast e ACR.

Organigramma aziendale

Le funzioni di staff hanno il compito, per quanto di propria competenza, di garantire una maggiore focalizzazione sui processi trasversali e di supportare le funzioni di line che svolgono invece attività di carattere gestionale. In staff alla Direzione generale si posiziona il servizio "Qualità, Sicurezza e Ambiente" che redige, verifica e mantiene costantemente aggiornato il sistema di gestione integrato, garantendo l'applicazione omogenea delle disposizioni in campo ambientale e di sicurezza e delle disposizioni trasversali di sistema, oltre a dedicarsi anche al mantenimento, sviluppo e promozione del progetto EMAS. All'interno del QSA si colloca anche il Servizio Prevenzione e Protezione che cura tutte le tematiche relative alla sicurezza. In line si colloca:

- La **Direzione Produzione** che sovraintende la gestione degli impianti di smaltimento, trattamento e recupero di rifiuti urbani e speciali, di origine urbana e industriale, organizzati in cinque Business Unit:
 - Termovalorizzatori
 - Discariche
 - Compostaggi e Digestori
 - Impianti rifiuti industriali
 - Selezione e recupero.
- La Direzione Mercato Utilities che accorpa la struttura "Vendite Utilities" a presidio della vendita e sviluppo commerciale dei servizi e delle capacità di recupero, trattamento e smaltimento degli impianti del perimetro di Herambiente e terzi, l'"Impianto di recupero Mantova", "Accettazione rifiuti" e "Flussi Logistici e PEA", finalizzata a favorire l'ottimizzazione dei flussi commercializzati verso impianti interni o di terzi e la gestione delle stazioni di trasferimento e piattaforme ecologiche.

Il parco impiantistico del Gruppo Herambiente è il più significativo nel settore in Italia ed in Europa: circa 93 impianti che coprono tutte le filiere di trattamento ed una struttura commerciale dedicata.

Termovalorizzatori

I **termovalorizzatori** sono in grado di "valorizzare" i rifiuti urbani e speciali non pericolosi e non recuperabili tramite combustione, **recuperando energia** sia sotto forma di energia elettrica che di calore. Gli impianti sono da tempo coinvolti in piani di ammodernamento continuo e potenziamento, mirato a soddisfare la crescente richiesta di smaltimento del territorio, compatibilmente con le esigenze sempre più stringenti di tutela ambientale. È proprio nell'ottica della sostenibilità che si perseguono anche programmi di efficientamento energetico continuo degli impianti. Per il contenimento delle emissioni sono previsti sistemi avanzati di trattamento dei fumi e sistemi di controllo delle emissioni che rispondono alle migliori tecniche disponibili, le **Best Available Techniques** (BAT), come definite dall'Unione Europea.

ONLINE LE EMISSIONI DEI TERMOVALORIZZATORI

Grazie a un sistema di monitoraggio in continuo, attraverso analizzatori automatici in funzione 24 ore su 24, tutti i principali parametri delle emissioni prodotte sono analizzati, memorizzati, trasmessi agli Enti di controllo, pubblicati e aggiornati ogni mezz'ora sul sito web di Herambiente, visibili a chiunque per garantire la massima trasparenza. Per ogni parametro sono indicate le concentrazioni massime ammesse dalla normativa (D. Lgs. 152/2006 e s.m.i.) e dalle singole Autorizzazioni Integrate Ambientali, più restrittive rispetto a quelle di settore.

* Selezione e recupero

In linea con l'obiettivo di recuperare la maggiore quantità possibile di materia, riducendo al contempo il volume finale dei rifiuti da smaltire, Herambiente è dotata di impianti di selezione e di separazione meccanica. Gli impianti di selezione

trattano la frazione secca proveniente da raccolta differenziata dei rifiuti urbani (plastica, vetro, carta, cartone, lattine, legno, metalli ferrosi, materiali misti), valorizzando la raccolta differenziata e rendendo possibile l'effettivo reinserimento dei materiali nei cicli produttivi, anche attraverso il conferimento ai consorzi di filiera. La separazione meccanica permette, invece, il recupero di materiali anche dalla raccolta indifferenziata, separando la frazione secca da quella umida e rendendo possibile il recupero dei metalli.

Anello importante nel sistema di gestione integrato Herambiente, la selezione rende possibile l'effettivo reinserimento di materiali nel ciclo produttivo, anche attraverso il conferimento ai Consorzi di Filiera.

📶 Impianti rifiuti industriali

Gli impianti dedicati ai rifiuti industriali sono diversificati e offrono un'ampia gamma di possibilità di trattamento: trattamento chimico-fisico e biologico di rifiuti liquidi e fanghi, pericolosi e non pericolosi, in grado di trasformare grazie

Di particolare interesse l'impianto Disidrat dedicato ai fanghi industriali, che per varietà di rifiuti trattati, dimensioni e caratteristiche tecnologiche si pone tra le eccellenze europee del settore. all'utilizzo di determinati reattivi e specifiche dotazioni tecnologiche, un rifiuto, generalmente liquido, in un refluo con caratteristiche idonee allo scarico, incenerimento di solidi e liquidi, combustione di effluenti gassosi nonché trattamento d'inertizzazione, che consente di trattare e rendere innocui i rifiuti inglobando gli inquinanti presenti in una matrice cementizia. La Business Unit è caratterizzata da impianti

complessi in grado di garantire una risposta esaustiva alle esigenze del mercato dei rifiuti industriali (es. aziende farmaceutiche, chimiche e petrolchimiche).

Compostaggi e digestori

La frazione organica della raccolta differenziata viene valorizzata attraverso la produzione e commercializzazione di compost di qualità e di energia elettrica. Negli impianti di compostaggio tale frazione organica viene trattata mediante un

naturale processo biologico, in condizioni controllate, per diventare un fertilizzante da utilizzare in agricoltura o ammendante per ripristini ambientali. I biodigestori, invece, grazie a un processo di digestione anaerobica a secco consentono di ricavare biogas dai rifiuti organici e generare energia elettrica totalmente rinnovabile. Uno dei principali vantaggi dell'implementazione dei biodigestori presso gli impianti di compostaggio è che le sostanze maleodoranti contenute nei rifiuti organici sono le prime a trasformarsi in gas metano, riducendo notevolmente le emissioni odorigene sia nel processo sia durante l'utilizzo del compost, rispetto a quanto avviene nei tradizionali impianti di compostaggio.

A ottobre 2018 è stato inaugurato il nuovo impianto a Sant'Agata Bolognese per la produzione, dal trattamento dei rifiuti provenienti dalla raccolta differenziata di organico e sfalci/potature, di biometano, combustibile rinnovabile al 100% da destinare all'utilizzo per autotrazione.

L'impianto è il primo realizzato da una multiutility in Italia per valorizzare al massimo scarti e rifiuti.

Discariche

Destinate allo smaltimento dei rifiuti tramite operazioni di stoccaggio definitivo sul suolo o nel suolo, la quota dei rifiuti smaltiti in discarica è in **netta e progressiva diminuzione**, in coerenza con gli obiettivi comunitari che puntano a ridurre e tendenzialmente azzerare il ricorso a questo tipo di smaltimento. Ad oggi, tuttavia, la discarica resta l'unica destinazione possibile per le frazioni non recuperabili dalle quali, tuttavia, è possibile **estrarre valore sotto forma di biogas naturalmente prodotto** durante la decomposizione della componente organica dei rifiuti, inviato a idonei generatori per la produzione di energia elettrica. Le discariche gestite da Herambiente sono prevalentemente per rifiuti non pericolosi che rappresentano la quasi totalità degli impianti di discarica della società; di queste più della metà sono in fase di postgestione ovvero nella fase successiva all'approvazione della chiusura della discarica da parte dell'Autorità Competente.

DISCARICHE IN FASE POST-OPERATIVA

Tale fase è funzionale ad evitare che vi siano impatti negativi sull'ambiente prevedendo attività di presidio, controllo e monitoraggio del sito in continuità alla fase operativa. Herambiente, nelle discariche esaurite, si impegna costantemente nella tutela ambientale garantendo il mantenimento di un sistema di gestione ambientale attivo e l'applicazione di specifici piani di sorveglianza e controllo.

5 LA STRATEGIA GESTIONALE DI HERAMBIENTE

Il Gruppo Herambiente con il suo parco impiantistico ampio e articolato e un network europeo di operatori qualificati si propone anche a livello internazionale come una concreta risposta al problema rifiuti, grazie a investimenti in tecnologie sempre all'avanguardia ed ai costanti interventi di potenziamento e rinnovamento che garantiscono sviluppo, alte performance ambientali, trasparenza e innovazione. L'attività di Herambiente si caratterizza per una gestione integrata dei rifiuti che risponde alle priorità fissate dalle direttive europee di settore, offrendo un'ampia gamma di servizi a valore aggiunto, che abilitano la transizione all'economia circolare.

I NOSTRI NUMERI NEL 2024

7,9 MLN tonnellate di rifiuti trattati
 895 GWh_E di Energia Elettrica prodotta
 10,09 MLN Sm³ di biometano prodotto

Ogni tipologia di rifiuto viene gestita in modo responsabile e a 360°, in ottica di economia circolare, trasformando i rifiuti da problema in risorsa. Viene minimizzato il più possibile il ricorso alla discarica, a favore invece di riciclo e recupero. Herambiente ha infatti ridotto la percentuale dei conferimenti in discarica, passati dal 30,1% nel 2009 al 2,5% nel 2024, incrementando i quantitativi di rifiuti avviati a selezione o recupero ed alla termovalorizzazione. La leadership di Herambiente deriva certamente dalle quantità di rifiuti raccolti e trattati e dal numero di impianti gestiti; tuttavia, il primato non è solo una questione di numeri, ma è dato anche dalla capacità di perseguire una gestione responsabile delle risorse naturali e il ricorso a soluzioni in grado di migliorare l'impatto ambientale delle proprie attività. Da sottolineare come la politica ambientale di Herambiente, data la complessità del parco impiantistico in gestione, è frutto di una strategia di governo unica che, in virtù di risorse non illimitate a disposizione, comporta la definizione di priorità, privilegiando quegli interventi che massimizzano il ritorno ambientale ed i benefici di tutti gli stakeholder compresi gli investitori. Il tutto nel segno di una continua proiezione al futuro e all'innovazione, testimoniata non solo dai suoi volumi d'affari, ma anche da una spiccata capacità di programmazione che risponde alla grande sfida – europea e mondiale - della transizione ecologica.

VEDERE I RIFIUTI COME RISORSA È LA CHIAVE DI UN MONDO La pianificazione strategica aziendale del Gruppo che prende vita dalla *mission* aziendale è recepita nel *Piano Industriale* predisposto annualmente dall'Organizzazione con validità quadriennale. Nel nuovo Piano Industriale 2025-2028 prosegue il percorso di crescita intrapreso dal Gruppo con investimenti e progetti concreti per l'economia circolare e la transizione energetica. Le strategie di sviluppo

del Piano prevedono azioni diversificate quali l'espansione della capacità impiantistica ed il continuo efficientamento energetico del parco impianti nell'ottica di garantire lo sviluppo ed il consolidamento delle performance impiantistiche. Continua inoltre a essere al centro del Piano l'obiettivo di offrire le migliori soluzioni per il massimo recupero possibile di materia ed energia allungando la catena del recupero in ottica di

"economia circolare" nel rispetto dell'ambiente. Da menzionare anche come, in un contesto normativo in continua evoluzione, Herambiente garantisca un presidio sui tavoli europei di temi rilevanti.

Gli investimenti e la strategia di sviluppo sono mirati al miglioramento continuo dell'intera organizzazione, attraverso l'individuazione di priorità e di interventi che massimizzino il ritorno ambientale in accordo con tutte le parti interessate, pertanto, non tutti gli anni è possibile individuare per singolo impianto Herambiente dei programmi di miglioramento ambientale corposi. I **programmi di miglioramento ambientale**, riportati nelle dichiarazioni ambientali, non possono quindi essere considerati singolarmente ma devono essere valutati in un'ottica d'insieme, che nasce dalla necessità di coniugare la propria vocazione imprenditoriale con l'interesse di tutte le parti coinvolte, attuando le scelte di pianificazione compiute dalle istituzioni e creando allo stesso tempo valore per i propri azionisti e per il territorio con investimenti innovativi nel rispetto dell'ambiente e dei cittadini.

La sostenibilità e l'Economia Circolare

Lo sviluppo sostenibile e la transizione verso un'economia circolare sono obiettivi prioritari inseriti nell'Agenda ONU al 2030. È in questo contesto, dove i temi dell'economia circolare e della gestione responsabile dei rifiuti sono oggi cruciali, che si cala Herambiente, leader nazionale nella gestione responsabile dei rifiuti.

Il Gruppo Herambiente con la sua grande esperienza esercita un ruolo guida per una transizione ambientale sostenibile, con l'obiettivo di perseguire standard di efficienza e redditività, alte percentuali di riciclo e recupero di materia ed energia. Gli scarti una volta trattati da Herambiente diventano compost, energia, calore, plastica rigenerata: l'economia circolare diventa così concreta.

Herambiente è impegnata nel massimizzare il recupero energetico da tutti i processi di trattamento e smaltimento gestiti e anche l'anno 2024 è stato caratterizzato dal proseguimento delle iniziative, già avviate, volte al recupero di materia ed efficienza energetica rispetto allo "smaltimento" continuando la forte accelerazione verso il processo di trasformazione delle proprie attività industriali in ottica di "economia circolare".

Da ricordare l'acquisizione nel 2017 di **Aliplast S.p.A**, prima azienda italiana a raggiungere la piena integrazione lungo tutto il ciclo di vita della plastica producendo così materiali disponibili al riutilizzo e, nel 2018, l'inaugurazione **dell'impianto di biometano di Sant'Agata Bolognese (BO)**, il primo realizzato da una multiutility italiana, per la produzione di biometano da trattamento dei rifiuti provenienti dalla raccolta differenziata di organico e sfalci/potature, rendendo possibile un circuito virtuoso che parte dalle famiglie e ritorna ai cittadini. Successivamente, il medesimo obiettivo ha trovato efficacia nel **nuovo impianto per la produzione di biometano a Spilamberto**, della nuova società Biorg, avviato a fine 2022. Il continuo impegno alla circolarità è inoltre testimoniato dalla realizzazione attualmente in corso d'opera, a Imola (BO), dell'impianto di riciclo della fibra di carbonio primo nel suo genere in Europa. Una soluzione innovativa che va incontro alle esigenze di diversi settori industriali di riferimento.

Il Gruppo Herambiente si impegna inoltre in progetti che hanno lo scopo di fornire un contributo concreto all'analisi del contesto ambientale per la tutela dell'ambiente in cui si collocano i propri siti impiantistici a garanzia di una gestione trasparente. Tra i vari si menziona il progetto innovativo di biomonitoraggio "Capiamo" che si affida alle api, quali bioindicatori chiave per studiare la qualità dell'ambiente. Il progetto ha interessato il termovalorizzatore di Pozzilli (IS), l'impianto di compostaggio con produzione di biometano di Sant'Agata Bolognese (BO) e la discarica di Serravalle Pistoiese (PT), mentre attualmente sono coinvolti la discarica di Cordenons (PN), il termovalorizzatore di Padova e di Bologna.

6 IL SISTEMA DI GESTIONE INTEGRATO

L'attenzione profusa da Herambiente su qualità, sicurezza e ambiente è resa più tangibile dai risultati raggiunti in questi anni in ambito certificativo. Per contribuire alla protezione dell'ambiente e alla salvaguardia delle risorse e dei lavoratori, Herambiente ha stabilito un proprio sistema di gestione integrato che viene costantemente attuato, mantenuto attivo e migliorato in continuo, ai sensi delle norme UNI EN ISO 9001:2015, 14001:2015, UNI ISO 45001:2018 e del Regolamento CE 1221/2009 (EMAS) come modificato dai Regolamenti UE 2017/2015 e 2018/2026. Si aggiunge l'implementazione di un "sistema energia" finalizzato al monitoraggio e miglioramento dell'efficienza energetica sugli impianti del Gruppo che ha visto il conseguimento della certificazione ISO 50001 nel corso del 2020.

Herambiente ha inoltre conseguito, nel corso del 2018, la **Certificazione di sostenibilità del biometano** prodotto nel nuovo impianto di Sant'Agata Bolognese che ha previsto lo sviluppo di un sistema di tracciabilità e di un bilancio di massa in accordo allo "Schema Nazionale di Certificazione dei Biocarburanti e dei Bioliquidi". Il sistema di gestione integrato permette ad Herambiente di:

- gestire gli impatti ambientali e gli aspetti di sicurezza delle proprie attività;
- parantire un alto livello di affidabilità dei servizi offerti verso le parti interessate (cliente, società civile, comunità locale, pubblica amministrazione, ecc.);
- garantire il rispetto delle prescrizioni legali applicabili ed altre prescrizioni;
- definire i rischi e gli obiettivi di miglioramento coerentemente con la propria politica e perseguire il miglioramento continuo delle prestazioni nel campo della sicurezza, gestione ambientale, energia e qualità.

Il sistema di gestione si è evoluto integrando i concetti chiave introdotti dalle nuove versioni delle norme ISO quali il contesto dell'organizzazione, il ciclo di vita e il rischio. Herambiente ha provveduto ad analizzare gli elementi del **contesto** in cui opera, sia interni che esterni, declinati nelle diverse dimensioni (economico, finanziario, assicurativo, normativo, tecnologico, ambientale, sociale, aziendale), a definire i bisogni e le aspettative rilevanti delle **parti interessate** quali soggetti che possono influenzare e/o sono influenzati dalle attività, prodotti e servizi dell'organizzazione, pianificando il proprio sistema secondo la **logica del risk-based**, mirata ad identificare e a valutare rischi e opportunità intesi come effetti negativi o positivi che possono impedire o contribuire a conseguire il proprio miglioramento.

IL PROGETTO EMAS

Nato nel 2005 sotto la regia di Hera Spa – Divisione Ambiente, nel corso degli anni e con la nascita di Herambiente, il progetto è andato ampliandosi con l'obiettivo di una progressiva registrazione EMAS dei principali impianti di Herambiente. Attualmente sono presenti in Herambiente 23 siti registrati EMAS.

In un'ottica di razionalizzazione, l'organizzazione intende mantenere quanto raggiunto in questi anni a livello di registrazione dei propri siti impiantistici, escludendo però quegli impianti non più attivi o minori e quindi non strategici per l'azienda stessa. Tale decisione scaturisce dalla difficoltà di perseguire il requisito del miglioramento continuo delle prestazioni ambientali, alla base del Regolamento EMAS, per siti non più produttivi come le discariche in fase di gestione post-operativa e caratterizzate da standard ambientali già performanti. Il Progetto EMAS rimane comunque strategico per gli impianti attivi di Herambiente prevedendone la futura implementazione per i nuovi impianti realizzati o in corso di realizzazione, compresi quelli acquisiti a seguito di modifiche societarie.

6.1 LA VALUTAZIONE DEGLI ASPETTI AMBIENTALI

Nel rispetto del proprio sistema di gestione ambientale, Herambiente identifica e valuta annualmente gli aspetti ambientali che possono determinare significativi impatti ambientali e le proprie performance ambientali quale elemento qualificante nella scelta delle strategie e dei programmi.

Gli aspetti ambientali possono essere "diretti" se derivano da attività sotto controllo dell'organizzazione o "indiretti" se dipendono da attività di terzi che interagiscono e che possono essere influenzati dall'organizzazione. L'individuazione degli aspetti ambientali considera anche una prospettiva di Ciclo di Vita, valutando la significatività degli aspetti ambientali connessi ai processi/servizi svolti dall'Organizzazione lungo le fasi della loro vita.

RIFIUTI in INGRESSO/USCITA RICHIAMO ANIMALI E INSETTI SUOLO E SOTTOSUOLO **ENERGIA** GAS FLUORURATI AD EFFETTO SERRA RADIAZIONI IONIZZANTI RISORSE IDRICHE

AMIANTO

SCARICHI IDRICI

TRAFFICO

SOSTANZE LESIVE PER L'OZONO

MATERIE PRIME

INQUINAMENTO LUMINOSO

RUMORE

PCB e PCT

ODORI

RADIAZIONI NON IONIZZANTI

Aspetti ambientali valutati da Herambiente

Il processo di valutazione degli aspetti ambientali diretti si fonda sui seguenti tre criteri, ciascuno sufficiente a determinare la significatività dell'aspetto, considerando condizioni di funzionamento normali, transitorie e di emergenza:

- Grado di rispetto delle prescrizioni legali e delle altre prescrizioni applicabili: si adottano limiti interni più restrittivi (mediamente 80% del limite di legge) al fine di garantire all'azienda un elevato margine per poter intraprendere azioni tese ad eliminare o ridurre le cause di potenziali superamenti.
- Entità dell'impatto: è valutato l'impatto esterno in termini quali quantitativi.
- Contesto territoriale e Sensibilità collettiva: si valuta il grado di sensibilità delle parti interessate e dell'ambiente locale in cui l'unità è inserita.

Per la valutazione degli aspetti indiretti, qualora siano disponibili i dati necessari, viene applicato lo stesso criterio di valutazione utilizzato per gli aspetti diretti. L'entità dell'aspetto così determinato viene corretto attraverso un fattore di riduzione che tiene conto del grado di controllo che Herambiente può esercitare sul terzo che genera l'aspetto. Qualora i dati non siano disponibili, la significatività viene valutata attraverso la presenza di richieste specifiche inserite nei contratti o nei capitolati d'appalto ed alla sensibilizzazione del soggetto terzo.

La valutazione degli aspetti ambientali, effettuata annualmente da Herambiente, si basa sui dati di esercizio dell'anno precedente e sui risultati dei monitoraggi. La significatività si traduce in un maggior controllo operativo rispetto alla prassi ordinaria. Nella presente dichiarazione ambientale ad ogni aspetto ambientale è associato l'esito della valutazione indicato come:

Aspetto significativo —

Aspetto non significativo

GLI INDICATORI AMBIENTALI

Il sistema di gestione ambientale di Herambiente utilizza Indicatori chiave volti a misurare le proprie prestazioni ambientali e il grado di conformità dei processi a criteri più restrittivi rispetto alla normativa. Tali indicatori, da sempre riportati in dichiarazione ambientale, presentano le seguenti caratteristiche:

- Differenziati per Business Unit in base al processo produttivo.
- Applicati su dati quantitativi certi e non stimati.
- Non applicati, tendenzialmente, agli aspetti indiretti.
- Indicizzati rispetto ad un fattore variabile per Business Unit e per aspetto analizzato.

Si è provveduto, inoltre, alla disanima della Decisione UE/2020/519 relativa al documento di riferimento settoriale sulle migliori pratiche di gestione ambientale (BEMP), sugli indicatori di prestazione ambientale settoriale e sugli esempi di eccellenza per il settore della gestione dei rifiuti dalla quale è emersa una sua parziale applicabilità. Risultano, infatti, esclusi dal campo di applicazione del documento di riferimento settoriale gli impianti di Herambiente che effettuano trattamenti ricadenti nell'ambito di applicazione della Direttiva 2010/75/UE¹ relativa alle emissioni industriali (Autorizzazione Integrata Ambientale) e soggette alle Best Available Techniques di settore, quali termovalorizzatori (con annessa piattaforma ecologica), discariche, compostaggi e digestori ed impianti di trattamento chimico-fisico. La Decisione non contempla inoltre i rifiuti industriali e commerciali che non rientrano tra i Rifiuti Solidi Urbani (RSU), tipologie di rifiuto trattate in alcuni siti Herambiente. Relativamente ai pochi impianti Herambiente non ricadenti nella Direttiva 2010/75/UE che trattano rifiuti solidi urbani, per i quali pertanto potrebbero trovare parziale applicazione alcune BEMP della Decisione, preme sottolineare come già sia stata valutata con esito positivo la conformità dei processi svolti alle Migliori Tecniche Disponibili di settore, siano stati adottati criteri volti a definire quando un rifiuto cessa di essere tale (migliori pratiche di gestione ambientale previste dalla BEMP trasversale) e come le fasi dei processi svolti prevedano controlli e operazioni per massimizzare la resa del recupero individuati anche dalla BEMP per il trattamento dei rifiuti. Per questi impianti risultano anche già adottati gli indicatori di prestazione ambientale volti alla valutazione della percentuale di recupero e dell'efficienza energetica.

Dalla disamina della Decisione UE/2020/519 si confermano pertanto gli indicatori di prestazione ambientale, riportati nella seguente tabella, individuati per ogni Business Unit di Herambiente ed applicati nelle dichiarazioni ambientali.

BUSINESS UNIT	INDICATORI
DISCARICHE IN ESERCIZIO	"Efficienza di utilizzo energetico": consumo gasolio/rifiuto in ingresso (tep/tonn) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche "Efficienza di recupero energetico": energia elettrica prodotta/biogas captato (kWh/Nm³)
DISCARICHE IN POST-GESTIONE	"Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche "Efficienza di recupero energetico": energia elettrica prodotta/biogas captato (kWh/ Nm³)
PIATTAFORME DI STOCCAGGIO	"Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore%). Indicatore applicato per scarichi idrici "Rifiuto autoprodotto su rifiuto trattato": quantità di rifiuti autoprodotti distinti in pericolosi e non/rifiuti in ingresso (tonn/tonn)
TERMOVALORIZZATORI	"Energia recuperata da rifiuto": energia elettrica prodotta/rifiuto termovalorizzato (tep/tonn) "Efficienza di utilizzo energetico": energia totale consumata/rifiuto termovalorizzato (tep/tonn) "Utilizzo di energia da fonte rinnovabile": energia rinnovabile consumata/energia totale consumata (valore %) "Efficienza di utilizzo di risorsa Idrica": acqua utilizzata/rifiuto termovalorizzato (m³/tonn) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche "Fattori di emissione macroinquinanti": quantità di inquinante emesso all'anno/rifiuto termovalorizzato (kg/tonn) "Fattori di emissione microinquinanti": quantità di inquinante emesso all'anno/rifiuto termovalorizzato (kg/tonn) "Fattori di emissione dei Gas Serra": quantità di CO₂ emessa/rifiuto termovalorizzato (tonn CO₂/tonn) "Fattore di utilizzo reagenti": consumo reagenti per trattamento fumi/rifiuto termovalorizzato (tonn/tonn) "Rifiuto autoprodotto su Rifiuto termovalorizzato": quantità di rifiuti autoprodotti distinti in pericolosi e non/rifiuti in ingresso (tonn/tonn)
COMPOSTAGGI E DIGESTORI	"Efficienza del processo produttivo": compost venduto-prodotto/rifiuto trattato (valore %) "Energia recuperata da rifiuto": energia prodotta/rifiuto trattato (tep/tonn) "Utilizzo di energia da fonte rinnovabile": energia rinnovabile consumata/energia totale consumata (valore %) "Efficienza di utilizzo energetico": energia totale consumata/rifiuti trattati (tep/tonn) "Efficienza di utilizzo energia rinnovabile": energia autoprodotta da fonti rinnovabili /rifiuto trattato (tep/tonn) "Efficienza di recupero energetico": energia elettrica prodotta/biogas recuperato (kWh/Nm³) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato alle caratteristiche chimico-fisiche del compost e biostabilizzato prodotti, scarichi idrici, emissioni atmosferiche "Rifiuto prodotto su rifiuto in ingresso": sovvallo prodotto/rifiuti trattati (valore % o tonn/tonn) "Biometano recuperato da rifiuto": biometano ceduto/rifiuto trattato nella linea di digestione (Sm³/tonn) "Efficienza della sezione di upgrading": biometano inviato in rete/biometano totale prodotto (Nm³/Nm³)
IMPIANTI RIFIUTI INDUSTRIALI	"Efficienza di utilizzo energetico": consumo energia totale/rifiuto trattato (tep/tonn) "Efficienza di utilizzo di risorsa idrica": consumo acqua/rifiuto trattato (m³/tonn) "Volumi scaricati su Rifiuto trattato": volume acque scaricate/rifiuto trattato (m³/tonn) "Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici "Rese di abbattimento": (1-concentrazione OUT/concentrazione IN) *100 "Fattore di utilizzo reagenti": consumo reagenti/rifiuto trattato (tonn/tonn) "Rifiuti autoprodotti su Rifiuti trattati": quantità di rifiuti autoprodotti distinti in pericolosi e non/rifiuti in ingresso (tonn/tonn)

¹ Direttiva relativa alle emissioni industriali (prevenzione e riduzione integrate dell'inquinamento).

"Efficienza di utilizzo energetico	: consumo energia elettrica	a/rifiuto trattato (tep/tonn)
------------------------------------	-----------------------------	-------------------------------

"Posizionamento rispetto al limite": concentrazione rilevata/limite di legge (valore %). Indicatore applicato per scarichi idrici, emissioni atmosferiche

"Percentuale di Recupero-Smaltimento": quantità di rifiuto inviato a recupero-smaltimento/quantità di rifiuto in ingresso all'impianto (valore %)

"Rifiuto prodotto su Rifiuto trattato": sovvallo prodotto/rifiuti trattati (valore % o tonn/tonn)

8 LA COMUNICAZIONE

SELEZIONE E

RECUPERO

La **comunicazione esterna** in ambito sociale ed ambientale rappresenta uno strumento di trasparenza per la diffusione dei principi della sostenibilità ambientale ed un mezzo importante per il raggiungimento di specifici obiettivi strategici dell'azienda. Il Gruppo promuove, direttamente o tramite sponsorizzazioni, eventi di formazione e di educazione ambientale nelle scuole, incontri con il pubblico e le circoscrizioni per assicurare una chiara e costante comunicazione e per mantenere un dialogo con i clienti, volto ad aumentare il livello di conoscenza verso le attività dell'azienda.

Uno dei principali strumenti di comunicazione verso l'esterno, adottato annualmente dal Gruppo, è costituito dal **Bilancio di sostenibilità**, che rappresenta il documento di dialogo con i portatori di interesse e con il territorio di tutta l'organizzazione, recante le informazioni inerenti alle attività economiche, ambientali e sociali.

Rappresentano, inoltre, strumenti fondamentali di comunicazione verso l'esterno le **Dichiarazioni Ambientali** di Herambiente, relative ai complessi impiantistici ad oggi registrati. Tali documenti vengono pubblicati in versione informatica sul sito del Gruppo (www.herambiente.it).

Herambiente promuove iniziative di comunicazione ambientale, convegni ed incontri formativi soprattutto legati a diffondere le corrette modalità di gestione dei rifiuti.

Con particolare riferimento alla **comunicazione ambientale interna**, Herambiente si impegna a promuovere, tra i dipendenti di ogni livello, un'adeguata conoscenza dei sistemi di gestione e degli aspetti ambientali e di sicurezza, attraverso iniziative di formazione e addestramento.

IMPIANTI APERTI

Il Gruppo Herambiente, da sempre attento alle tematiche ambientali e alla diffusione di una mentalità ecologicamente responsabile, offre la possibilità di effettuare **visite guidate presso i propri impianti**, prenotabili direttamente dal sito web, per fornire una visione completa e trasparente del processo di trattamento dei rifiuti. Con l'obiettivo di aumentare la conoscenza dei cittadini sul funzionamento degli impianti, i visitatori sono guidati attraverso appositi percorsi realizzati dal Gruppo Hera all'interno degli impianti alla scoperta del viaggio di trasformazione del rifiuto. Nel corso del 2024 si è registrato un numero complessivo di **148 giornate di visite** agli impianti del Gruppo Herambiente (termovalorizzatori, compostaggi e digestori, selezione e recupero, discariche, impianti rifiuti industriali) per un totale di **3.546 visitatori**.

Nell'ottica di stimolare un maggior interesse nelle nuove generazioni possono essere attivate anche le **visite "virtuali"** con le scuole. Gli studenti, direttamente dai loro banchi di scuola, possono seguire un educatore ambientale che illustra le diverse fasi di funzionamento dell'impianto.

Per completare il percorso di divulgazione e trasparenza è presente sul sito Herambiente (<u>www.herambiente.it</u>) una sezione interamente dedicata all'intero parco impiantistico, completa di descrizioni e schede tecniche dettagliate relative agli impianti.

9 IL COMPLESSO IMPIANTISTICO

Nel campo di applicazione della presente dichiarazione ambientale rientra **l'impianto di termovalorizzazione** di rifiuti, in cui si effettua l'incenerimento con recupero energetico di Combustibile Solido Secondario (CSS) / biomasse, sito in via dell'Energia a Pozzilli (IS).

Con il termine incenerimento si indica il processo di ossidazione di sostanze organiche, il cui scopo principale è quello di convertire i rifiuti in composti gassosi (vapore acqueo e anidride carbonica) e in residui solidi praticamente inerti (ceneri) (Figura 1). Parallelamente a questo processo, viene sfruttato il potenziale energetico del rifiuto per produrre energia elettrica da immettere nella rete nazionale di distribuzione al netto degli autoconsumi per il processo.

Figura 1 Input e output del processo di termovalorizzazione

9.1 CENNI STORICI

- 1994: l'attività presso il sito di Pozzilli, in gestione ad Energonut Spa, ha inizio con la comunicazione all'albo nazionale smaltitori dei rifiuti secondo lo schema dell'allora vigente D.L. 443/93. Il Ministero dell'Industria, con nota del 14/1/94 decreta l'autorizzazione all'installazione e all'esercizio di un impianto di cogenerazione di energia elettrica della potenza massima di 11,4 MW elettrici nell'area industriale di Pozzilli.
- 2005: in virtù delle specifiche norme per la realizzazione e gestione d'impianti di incenerimento e coincenerimento di rifiuti previste dal D.Lgs. 133/2005, veniva deciso il rifacimento parziale ai fini di un generale ammodernamento dell'impianto. Il progetto di rifacimento veniva sottoposto al GRTN (ora GSE), ottenendo in data 25/05/05 la qualifica IAFR (Impianto Alimentato da Fonti Rinnovabili). Nel mese di dicembre 2005, l'impianto veniva fermato per riprendere le attività il 13 novembre 2007 avendo soddisfatto tutti i requisiti tecnici e gestionali previsti dalla normativa vigente.
- 2012: Herambiente Spa nel mese di novembre acquisisce, dal Gruppo Veolia, l'intero capitale sociale di Energonut Spa, società operante nel settore dell'ambiente che gestisce l'impianto di termovalorizzazione in oggetto.
- 2013: con decorrenza dal 01 luglio avviene la fusione per incorporazione di Energonut Spa, interamente controllata da Herambiente, in Herambiente Spa.
 - 2015: l'impianto opera in virtù dell'autorizzazione Integrata Ambientale concessa dalla Regione Molise con D.D. n° 15 del 14.07.2015 per lo "Smaltimento o recupero dei rifiuti in impianti di incenerimento per rifiuti non pericolosi con capacità superiore a 3Mg/h". In data 13.11.2015, con la D.D. n° 6652/15 viene infine concessa l'Autorizzazione Unica (ai sensi dell'art. 12 del D.Lgs. 387/2003) all'esercizio dell'impianto per la produzione di energia elettrica da coincenerimento con potenza elettrica pari a 13.5 MW da fonti rinnovabili (CSS/CDR/Biomasse).

9.2 CONTESTO TERRITORIALE

L'area su cui sorge l'impianto è ubicata all'interno dell'area industriale di Pozzilli, che fa parte del nucleo industriale Isernia - Venafro, e si trova circa 1.500 metri a nord del centro abitato di Pozzilli. Le abitazioni più vicine sono a circa 50 metri in direzione nord-est (Figura 2).

L'assetto socio-economico dell'area adiacente agli impianti è caratterizzato da attività economiche per lo più di tipo agricolo, artigianale ed industriale. Il sito di Pozzilli si inserisce in una zona esclusivamente industriale, all'interno del distretto produttivo di Isernia - Venafro ed è stato progettato tenendo conto delle caratteristiche geo-morfologiche e climatiche dell'area col ricorso a soluzioni costruttive e architettoniche di pregio.

Figura 2 Vista area del sito impiantistico

Clima ed atmosfera

L'area che ospita il sito è caratterizzata da un clima di tipo temperato, senza eccessive escursioni termiche nel periodo notturno. Secondo le rilevazioni effettuate nella stazione meteorologica di Venafro le temperature si aggirano su una media annuale di 15°C, con picchi massimi di 31°C in agosto e minime di 3°C nel periodo invernale. Le precipitazioni non superano i 200 mm all'anno, mentre si mantiene alto il tasso di umidità medio pari all'85%.

Caratteristiche fisiche e geo-morfologiche ed acque sotterranee

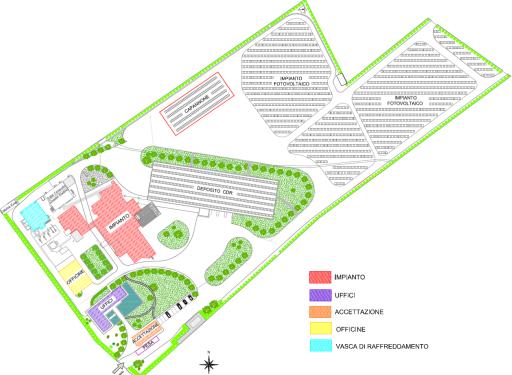
Il sito è localizzato nella parte mediana della Valle del Volturno, in un'ampia depressione che si estende in direzione Nord – Sud tra l'area dei Monti di Venafro e il massiccio del Matese.

Per quanto riguarda la litologia superficiale, lo stralcio della "Carta geologica dei depositi quaternari dell'alta valle del Fiume Volturno" mostra come l'area in esame si trovi in una zona caratterizzata dalla presenza di ghiaie calcaree e silicee in matrice sabbioso-argillosa, di spessore compreso tra 30 e 50 m e di facies tipo braided stream, con ciottoli centimetrici e decimetrici a buon grado di arrotondamento della cosiddetta Unità Principale. Il periodo di deposizione dell'unità è compreso tra il Pleistocene Inferiore ed il Pleistocene Medio. Al fine di analizzare le caratteristiche litostratigrafiche e geotecniche dei terreni del sito impiantistico, nel luglio 2016 è stato eseguito un sondaggio a carotaggio continuo, che ha raggiunto una profondità dal piano di campagna pari a 60 m. Dallo studio eseguito emerge come l'area si collochi in una zona pianeggiante, a debolissima pendenza, con presenza, nei primi 4 m dal piano campagna, di terreni limo-argillosi e sabbiosi,

² Brancaccio, L., Di Crescenzo, G., Rosskopf, C., Santangelo, M., Scarciglia, F., 2000. Carta geologica dei depositi quaternari e carta geomorfologica dell'alta valle del Fiume Volturno (Molise, Italia Meridionale).

seguiti da uno spessore di ghiaie pari a 16 m. Seguono poi alternanze di strati limosi e ghiaiosi, uno spessore di ghiaie calcaree con intercalato uno strato sabbioso e uno spessore basale di limi.


Aspetti naturalistici


L'insediamento produttivo, che è stato realizzato su un terreno industriale lottizzato non edificato, non insiste né confina con alcun tipo di area protetta, parco o riserva naturale. A circa due chilometri di distanza si trova l'oasi naturalistica "Le Mortine". Tutta l'area industriale è sotto tutela dei beni ambientali con l'imposizione di vincoli paesaggistici.

9.3 ORGANIZZAZIONE DEL COMPLESSO

L'area del sito si articola in quattro zone principali (Figura 3):

- > zona delle installazioni impiantistiche, dove hanno luogo le attività di produzione di energia elettrica mediante coincenerimento. Vi si trovano tutti gli impianti produttivi e quelli accessori;
- zona di stoccaggio rifiuti dotata di un'area coperta e chiusa in depressione dove vengono stoccati CSS e biomasse e un'altra, coperta, destinata al deposito temporaneo dei rifiuti prodotti e alla deferrizzazione delle scorie prodotte;
- zona di deposito prodotti chimici d'impianto e destinati alla manutenzione;
- zona uffici e portineria. Comprende anche la parte destinata alla pesa dei mezzi in ingresso e le relative pertinenze.

Inoltre, sono stati installati all'interno di un'apposita area dello stabilimento alle spalle del deposito (Figura 4), pannelli fotovoltaici per una potenza nominale complessiva pari a circa 500 kWp. I pannelli, posizionati secondo criteri di integrazione architettonica e armonizzazione non solo con la fisionomia del sito industriale ma anche con il contesto in cui si inserisce, sono in grado di sfruttare al massimo le condizioni d'irraggiamento. L'impianto fotovoltaico è operativo dal mese di giugno 2011 e l'energia prodotta non viene destinata ad autoconsumo ma immessa direttamente in rete.

Figura 4 Particolare pannelli fotovoltaici

9.4 RIFIUTI IN INGRESSO

L'impianto è autorizzato all'attività di termovalorizzazione di Combustibile Solido Secondario (CSS) e di alcuni rifiuti speciali non pericolosi per una capacità massima autorizzata pari a 93.500 tonn/anno di rifiuti da avviare a recupero energetico (R1). Gli ingressi di rifiuti presso il sito impiantistico riguardano, tuttavia, principalmente il CSS proveniente da diversi impianti di selezione di rifiuti urbani e speciali, autorizzati alla produzione di CSS, ubicati su tutto il territorio nazionale oltre che ovviamente dalla Regione Molise. In Tabella 1 si riporta, per il triennio di riferimento, il quantitativo di rifiuti in ingresso destinato alla termovalorizzazione dal quale si evince una lieve flessione nell'ultimo anno indotta dalla diminuzione nel numero di ore di funzionamento dell'impianto a seguito di fermate tecniche per manutenzione.

Tabella 1 Tipologia e quantitativi dei rifiuti termovalorizzati

Tipologia	U.M.	2022	2023	2024
Scarti inutilizzabili (EER 02.03.04)	tonn	0,12	37,98	18,75
Combustibile derivato da rifiuti (EER 19.12.10)	tonn	87.300,45	90.141,63	76.740,14
Totali	tonn	87.300,57	90.179,61	76.758,89

FONTE: ESTRAZIONE SOFTWARE GESTIONE RIFIUTI

Come evidente dalla tabella, i CSS rappresentano la quasi totalità dei rifiuti in ingresso al termovalorizzatore mentre i rifiuti con codice EER 02.03.04, in quantitativi ridotti, non sono gestiti direttamente da Herambiente ma il loro smaltimento viene ordinato tramite provvedimenti giudiziari (es. conferimento da parte delle forze dell'ordine, ecc.).

9.5 QUADRO AUTORIZZATIVO

Il complesso impiantistico è gestito nel rispetto dell'Autorizzazione Integrata Ambientale (AIA), di seguito indicata, nonché della normativa ambientale applicabile di cui si riporta una sintesi in Allegato 1. In ottemperanza alla normativa vigente, Herambiente ha presentato Domanda di Riesame di AIA³ e il procedimento risulta ad oggi ancora in corso.

Tabella 2 Elenco delle autorizzazioni in essere

SETTORE	AUTORITÀ CHE HA RILASCIATO	NUMERO e	AUTORIZZAZIONE
INTERESSATO	L'AUTORIZZAZIONE	DATA DI EMISSIONE	
Tutti i settori	Regione Molise	D.D. n° 15/15 del 14.07.2015	Autorizzazione Integrata Ambientale Impianto di coincenerimento rifiuti non pericolosi WTE-Pozzilli

22

³ Prot. HA n. 11726 del 07/07/2020.

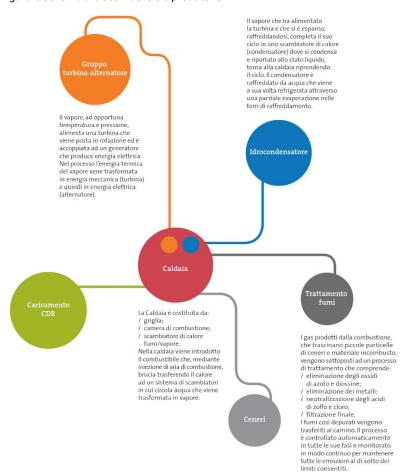
SETTORE	AUTORITÀ CHE HA RILASCIATO	NUMERO e	AUTORIZZAZIONE
INTERESSATO	L'AUTORIZZAZIONE	DATA DI EMISSIONE	
Tutti i settori	Regione Molise	D.D. Regione Molise n° 6652/15 del 13.11.2015	Autorizzazione unica all'esercizio dell'impianto per la produzione di energia elettrica da coincenerimento con potenza elettrica pari a 13.5 MW da fonti rinnovabili (CSS/CDR/Biomasse)

A maggior tutela dei cittadini e dell'ambiente, la gestione del sito assicura che, in caso di incidente ambientale, sia garantito il ripristino dello stato dei luoghi, mediante versamento di garanzie finanziarie a favore della Pubblica Amministrazione.

A seguito dell'ispezione ambientale effettuata dall'ARTA Abruzzo dal 27 al 30 giugno 2022 che ha rilevato una non conformità della piattaforma di lavoro installata presso il punto di campionamento delle emissioni in atmosfera (E1), Herambiente è stata diffidata⁴, nel maggio 2023 dalla Regione Molise, a predisporre ed inviare una proposta progettuale, corredata da relativo cronoprogramma, riguardante la costruzione di una nuova piattaforma e/o l'adeguamento di quella esistente a norma di legge, in grado di agevolare le operazioni di campionamento. Herambiente ha ottemperato a quanto richiesto trasmettendo⁵ la proposta progettuale corredata da relativo cronoprogramma lavori e, attualmente, è in attesa dell'approvazione formale da parte degli Enti.

10 IL CICLO PRODUTTIVO

L'impianto permette il recupero di rifiuti (CSS / biomasse) attraverso la combustione degli stessi. Il calore prodotto da tale processo è sfruttato per la produzione di energia elettrica.


Il trattamento dei rifiuti (schematizzato in Figura 5) può essere sintetizzato nelle seguenti fasi:

- Deposito preliminare rifiuti;
- Combustione;
- Depurazione fumi;
- Produzione di energia;
- Impianto di demineralizzazione.

⁴ Comunicazione Regione Molise n. 76470/2023 del 08/05/2023.

⁵ Comunicazione Herambiente n.8813/23 del 4/07/2023.

Figura 5 Schema a blocchi del ciclo produttivo

Oltre ai rifiuti speciali non pericolosi e le biomasse che l'impianto è autorizzato a trattare, costituiscono input al processo (vedi Figura 6) il metano fornito dalla rete esterna, che viene utilizzato unicamente per le fasi di avvio del forno e per la gestione ausiliaria del bruciatore in caso di cali della temperatura di esercizio del forno stesso, e l'acqua fornita dalla rete consortile. Il fabbisogno elettrico è, invece, coperto dall'energia prodotta nell'ambito del ciclo industriale. A queste risorse si aggiungono i «materiali di supporto» al ciclo produttivo, che sono essenzialmente prodotti utili al trattamento dei fumi (urea, bicarbonato, carbone attivo, ecc.) e composti chimici per il funzionamento dell'impianto, reagenti di laboratorio, oli lubrificanti e ricambi.

Figura 6 Flussi di input, output e materiali di supporto al processo

10.1 CONFERIMENTO RIFIUTI

I rifiuti combustibili pervengono all'impianto normalmente a mezzo di automezzi specificamente attrezzati ed autorizzati. I rifiuti in ingresso al sito, prima di poter essere scaricati in impianto, vengono sottoposti alla verifica di conformità amministrativa ed alle operazioni di pesatura da parte del servizio accettazione. Superati positivamente i controlli, i mezzi si recano nell'area di sosta dedicata ed attendono il consenso all'ingresso del capannone gestito da un impianto semaforico per indirizzare gli autoveicoli in fase di scarico.

Tutti i mezzi in transito sono sottoposti preventivamente a controllo sulla radioattività: i veicoli in entrata attraversano un rilevatore a scintillazione in grado di rilevare la radiazione gamma emessa.

L'intensità di radiazione rilevata viene comparata con un livello di soglia definito sulla base del livello di radiazione del fondo ambientale, incrementato di un opportuno valore. In caso di superamento della soglia limite si avviano tutte le procedure interne di intervento, a partire dall'attivazione del sistema di interblocco in accesso. Il mezzo che risulta positivo al controllo viene confinato in un apposito parcheggio in area retrostante il deposito rifiuti combustibili. Un tecnico esperto di radioprotezione individua poi la modalità di gestione più idonea per il carico in questione: se la materia radioattiva è soggetta a decadimento rapido (entro le 48 ore), una volta accertato il decadimento si procede all'accettazione e allo smaltimento dello stesso, se invece il decadimento supera le 48 ore, si procederà alla separazione e la presa in carico del materiale radioattivo, in conformità al vigente regime normativo in materia di radiazioni ionizzanti (D.Lgs. 101/2020), seguendo le disposizioni dell'esperto di radioprotezione o sotto sua sorveglianza diretta.

10.2 DEPOSITO PRELIMINARE RIFIUTI

L'area di stoccaggio preliminare dei rifiuti consiste in un capannone realizzato in cemento armato prefabbricato e completamente impermeabilizzato. Il capannone è in depressione, garantita dal normale tiraggio del forno di incenerimento. Nel capannone di deposito è anche presente un sistema ad enzimi, al fine di minimizzare lo sviluppo di odori e batteri, ed è dotato sul fronte di tre portoni automatici a ghigliottina a scorrimento veloce per l'ingresso dei mezzi.

La movimentazione dei rifiuti ed il caricamento della tramoggia di alimento del forno avvengono per mezzo di pala meccanica. Il sistema di caricamento della linea è caratterizzato dai seguenti elementi:

- tramoggia a fondo mobile;
- trasportatori a nastro, carterati superiormente per impedire la diffusione di polveri e odori, che conferiscono il rifiuto alla tramoggia di alimentazione del forno.

10.3 COMBUSTIONE

L'impianto è dotato di un forno autorizzato ad incenerire massimo 12 ton/h di rifiuti. L'unità di combustione (in Figura 7 una foto dell'interno camera) è costituita essenzialmente da una griglia mobile di combustione, una camera di combustione e una zona di post-combustione. La combustione avviene sulla griglia del forno che, grazie al movimento alternato dei gradini che la costituiscono, consentono l'avanzamento ed il rimescolamento del rifiuto al fine di ridurre la presenza di incombusti nelle scorie finali.

Figura 7 Camera di combustione

L'aria necessaria al processo di combustione dei rifiuti è distinta in aria primaria, da sottogriglia, e secondaria, in camera di combustione. Per aumentare il rendimento e diminuire le perdite, l'aria primaria, prima di essere utilizzata, viene opportunamente riscaldata con l'ausilio di scambiatori sfruttando lo spillamento di vapore proveniente dalla turbina. L'aria primaria viene prelevata dal capannone rifiuti e dall'esterno, mediante ventilatori centrifughi.

Successivamente all'immissione di aria secondaria, i fumi transitano attraverso una camera verticale posta sopra la camera di combustione, nota come camera di post-combustione, con caratteristiche tali da far raggiungere ai gas di combustione una temperatura minima di 850°C per un tempo superiore ai due secondi. Tale camera, oltre a permettere l'ossidazione delle sostanze volatili incombuste e la distruzione di sostanze organiche quali PCDD e PCDF, permette anche il convogliamento dei gas in uscita verso il generatore di vapore, prima fase del ciclo di recupero energetico.

Nella camera di post-combustione è previsto un bruciatore ausiliario alimentato a metano che interviene automaticamente in caso di abbassamento della temperatura sotto gli 850 °C.

Le scorie di combustione sono condotte ad un estrattore principale in bagno d'acqua e successivamente, tramite redler, alle aree di deposito temporaneo.

L'intero processo è costantemente monitorato attraverso un Software di controllo dei parametri principali della combustione: temperatura delle varie zone del forno, portata dell'aria insufflata, tenore di ossigeno ecc. (in Figura 8 la schermata principale di controllo del SW).

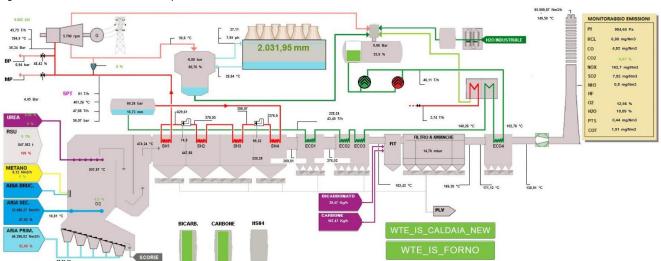


Figura 8 Schermata di controllo del processo

10.4 DEPURAZIONE FUMI

Al fine di garantire in modo continuo e controllato che le emissioni si mantengano al di sotto dei limiti di concentrazione previsti, in linea con quanto richiesto dall'Autorizzazione Integrata Ambientale, i fumi vengono trattati lungo tutto il percorso dalla camera di combustione al camino, in modo da contenere la concentrazione degli inquinanti in atmosfera. È presente un sistema di rilevazione in grado di effettuare una misurazione in continuo delle principali sostanze di processo. In particolare, sono previsti i seguenti sistemi di abbattimento:

- Iniezione controllata di urea solida granulare;
- Iniezione controllata di carboni attivi;
- Iniezione controllata di bicarbonato di sodio;
- Filtri a manica.

Allo stesso tempo, nel processo di combustione e di trattamento dei fumi vengono misurate e registrate in modo continuo, come da prescrizioni dell'Autorizzazione Integrata Ambientale, le concentrazioni delle sostanze immesse in atmosfera.

10.5 PRODUZIONE DI ENERGIA

L'energia termica prodotta dal forno genera, nella caldaia, vapore surriscaldato che viene inviato alla turbina a vapore connessa ad un alternatore per la produzione di energia elettrica. La sezione di surriscaldamento del Generatore di Vapore è corredata da un sistema di scuotimento ed evacuazione delle ceneri.

Il vapore esausto in uscita dalla turbina è inviato ad un condensatore ad acqua, dove, dopo essere stato condensato e aver subito un processo di degassazione, viene reimmesso nel ciclo termico.

L'energia prodotta dall'alternatore viene ceduta alla rete nazionale, detratta quella utilizzata per soddisfare le richieste d'impianto.

10.6 IMPIANTO DI DEMINERALIZZAZIONE

L'impianto di demineralizzazione dell'acqua ha lo scopo di rendere idonea all'uso nel generatore di vapore l'acqua prelevata dall'acquedotto consortile. Il trattamento eseguito dal sistema sull'acqua prelevata dall'acquedotto consortile consente di ottenere acqua demineralizzata pronta all'uso per l'immissione nel circuito termico: l'acqua utilizzata in tale circuito, infatti, deve possedere caratteristiche tali da non mettere a rischio il corretto funzionamento del circuito acqua/vapore della caldaia. Le potenziali incrostazioni che si dovessero formare all'interno delle tubazioni rischierebbero infatti di compromettere il passaggio del fluido vettore e, di conseguenza, la produzione di vapore.

L'impianto presenta:

- due colonne cationiche contenenti un letto di resine gelulari cationiche forti in ciclo di rigenerazione acido (tramite HCI) con flusso in controcorrente rispetto alla direzione di regolare funzionamento;
- una torre di decarbonatazione per lo strippaggio dell'anidride carbonica dotata di sistema di diffusione tramite anelli rashing, polmone di accumulo acqua e pompe di rilancio, una per ogni linea di demineralizzazione;
- due colonne anioniche contenenti un letto di resine anioniche forti in ciclo di rigenerazione sodico (tramite NaOH) con flusso in controcorrente rispetto alla direzione di regolare funzionamento;
- sezione di osmosi inversa.

Le due linee si alternano automaticamente in servizio in modo che si possa ottenere una produzione continua di acqua demineralizzata all'utenza. Mentre una linea entra in servizio, l'altra, che ha esaurito il ciclo di trattamento, viene rigenerata in modo che possa essere pronta nuovamente a rientrare in servizio. La linea appena rigenerata viene posta in stand-by in attesa di rientrare in regolare servizio quando l'altra a sua volta avrà esaurito il suo ciclo produttivo.

10.7 SEZIONE DI TRATTAMENTO DELLE SCORIE

L'organizzazione, come consentito dall'Autorizzazione Integrata Ambientale e s.m.i., ha la possibilità di procedere al trattamento delle scorie di combustione provenienti dal ciclo di termovalorizzazione del rifiuto non pericoloso all'interno dell'area di deposito temporaneo.

Il processo si articola nelle fasi di vagliatura e deferrizzazione del rifiuto, attraverso l'utilizzo di un vaglio a tamburo rotante con fori da 20 mm e nastri di trasporto dotati di pulegge magnetiche.

L'attività è finalizzata all'invio a recupero delle scorie deferrizzate (EER 190112 "Ceneri pesanti e scorie") presso idonei impianti autorizzati per il recupero di materia (es: cementifici). Tale trattamento è necessario per ridurre sensibilmente le frazioni di metalli magnetici presenti, ed inviare il rifiuto direttamente ai cementifici per il recupero di materia, evitando il passaggio attraverso altri impianti di trattamento. Allo stesso tempo anche i materiali ferrosi estratti sono inviati in idonei impianti autorizzati a recupero di materia.

11 GESTIONE ANOMALIE ED EMERGENZE

Il sistema di gestione integrato prevede procedure che definiscono le modalità comportamentali da tenersi in caso di emergenze di varia natura, comprese le emergenze ambientali.

Le situazioni di emergenza ipotizzabili e quindi considerate nella documentazione di sistema sono:

- Incendio e scoppio;
- fuga di gas metano;
- allagamenti;
- sversamento o fuoriuscite di sostanze pericolose, rifiuti o materie prime (reagenti liquidi e solidi, gasolio, rifiuti, ecc.);
- interruzione rete elettrica;
- malfunzionamento della linea fumi del termovalorizzatore (malfunzionamento del sistema di monitoraggio in continuo, malfunzionamento del sistema di iniezione reagenti dedicati all'abbattimento, ecc.);
- temporali e scariche atmosferiche;
- terremoto;
- tromba d'aria;
- infortuni, malore e incidente stradale.

Per ognuno di questi eventi sono previste le prime misure da adottare per ridurre i rischi per la salute del personale e per l'ambiente. Presso il sito sono svolte annualmente prove di emergenza ambientale. Ad oggi non sono stati registrati casi di emergenza ambientale.

12 ASPETTI AMBIENTALI DIRETTI

12.1 ENERGIA

Il termovalorizzatore, dal punto di vista del consumo di energia elettrica, risulta ovviamente autosufficiente: tutte le utenze sono alimentate in autoconsumo, salvo in condizioni di emergenza e di fermo impianto. La quantità di energia prodotta dall'impianto, sottratto il fabbisogno energetico del sito, è poi ceduta alla rete elettrica nazionale.

Il termovalorizzatore, oltre all'energia elettrica, consuma metano per alimentare il bruciatore di avviamento e post-combustione e, in misura limitata, gasolio per alimentare il gruppo elettrogeno e i mezzi di movimentazione. In Tabella 3 sono riportati i dati del bilancio energetico dell'ultimo triennio espresso in tonnellate di petrolio equivalenti (tep). Si osserva che nel triennio, in media, il rapporto *energia prodotta/energia consumata* si attesta all'incirca su 7:1, ovvero l'energia prodotta è quasi sette volte maggiore al fabbisogno energetico complessivo. È quindi evidente la valenza del termovalorizzatore come impianto di produzione di energia elettrica.

Nel triennio di riferimento il termovalorizzatore ha consentito di cedere alla rete circa 80.000 MWh all'anno. Considerato un consumo medio di energia elettrica di una famiglia pari a 2.700 kWh all'anno, si stima che il termovalorizzatore sia quindi in grado di garantire la copertura di un bacino di utenza di circa 29.630 famiglie.

Tabella 3 Bilancio energetico complessivo in tep (tonnellate di petrolio equivalenti)

	2022	2023	2024
Energia elettrica ceduta WTE	16.124	15.674	13.089
Energia elettrica ceduta fotovoltaico	111	102	97
Autoconsumo WTE	2.052	2.062	1.739
TOTALE ENERGIA PRODOTTA	18.287	17.837	14.926
Energia acquistata WTE	57	61	74
Autoconsumo WTE	2.052	2.062	1.739
Consumo Gas Naturale WTE	372	207	272
TOTALE ENERGIA CONSUMATA	2.482	2.329	2.086
BILANCIO ENERGETICO (ENERGIA PRODOTTA – ENERGIA CONSUMATA)	15.805	15.509	12.840

FONTE: PORTALE INFORMATIVO TECNICO (PIT)

■ Energia Elettrica Ceduta WTE

La rappresentazione grafica del bilancio energetico (Figura 9), evidenzia l'andamento dei singoli fattori (energia prodotta, energia consumata) nel triennio di riferimento. I quantitativi di energia elettrica prodotta così come i valori di autoconsumo sono lievemente in flessione nel triennio indotta, nel 2024, dalla diminuzione del numero delle ore di funzionamento.

I consumi dell'impianto sono determinati principalmente dalle utenze connesse al ciclo termico (recupero energetico, torri evaporative, produzione energia elettrica) ed alla depurazione fumi (trattamento fumi, stoccaggio/estrazione polveri e ventilatore estrattore). Nel triennio i valori di energia acquistata risultano ridotti e poco variabili. Eventuali oscillazioni nel consumo di Gas Naturale sono strettamente legate alla necessità di regolarizzazione e stabilizzazione del processo di combustione.

I consumi di gasolio, impiegato per mezzi d'opera, vaglio scorie e gruppo elettrogeno, non vengono presi in considerazione poiché di entità del tutto trascurabile.

Bilancio Energetico

20.000

16.000

12.000

Energia Prodotta Energia Consumata Energia Prodotta Energia Consumata 2022 2022 2023 2023 2024 2024

Energia Elettrica Acquistata WTE Combustibili Consumati Energia Elettrica Autoconsumata WTE

■ Energia Elettrica Ceduta FTV

Figura 9 Bilancio energetico del complesso impiantistico in tep (Energia prodotta / consumata)

Di seguito si riporta l'indicatore relativo al consumo da fonte rinnovabile⁶, espresso in termini percentuali rispetto al totale di energia consumata. L'andamento dell'indicatore è strettamente connesso con l'esercizio dell'impianto.

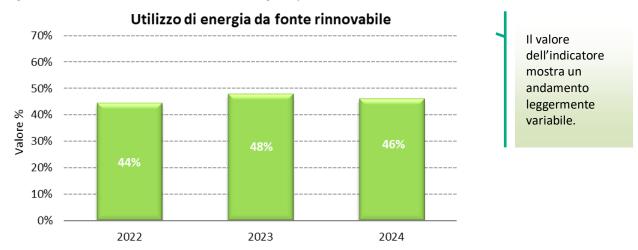
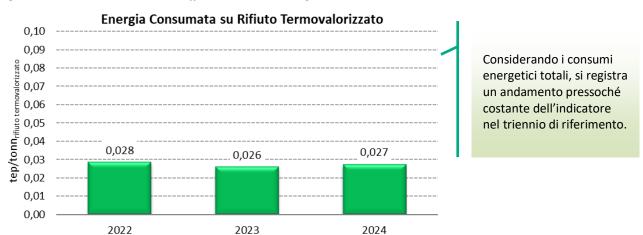
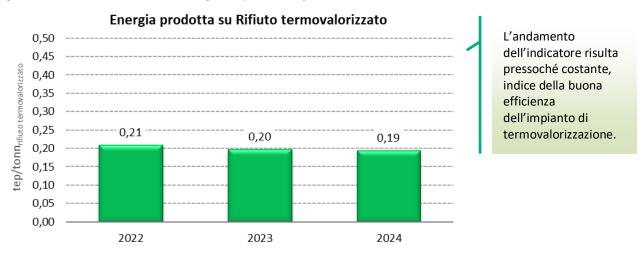


Figura 10 Andamento dell'indicatore "Utilizzo di energia da fonte rinnovabile"

Si rappresenta l'indicatore "Efficienza di utilizzo energetico" (Figura 11), calcolato sulla base del consumo energetico totale per unità di rifiuto termovalorizzato, che si attesta su un valore medio pari a circa 0,13 MWh/ton.




Figura 11 Andamento dell'indicatore "Efficienza di utilizzo energetico"

In Figura 12 è rappresentata la resa energetica del termovalorizzatore per cui il valore, espresso come quantità di energia lorda prodotta per unità di rifiuto termovalorizzato, si è attestato nel triennio a circa 0,2 tep/tonn, equivalente ad una produzione in media di circa 1,13 MWh su tonnellata di rifiuto termovalorizzato.

_

⁶ L'indicatore è calcolato come rapporto fra l'energia rinnovabile consumata e l'energia complessivamente consumata. Si considera Energia Rinnovabile il 51% dell'Energia elettrica prodotta secondo quanto indicato dal D.M. 06/07/2012. Tale percentuale viene attribuita anche all'energia autoconsumata. Si considera, inoltre, Energia Rinnovabile il 100% dell'energia elettrica acquistata con Garanzie d'Origine, coerentemente con l'approccio "Marked Based" previsto dal GHG Protocol.

Figura 12 Andamento dell'indicatore "Energia recuperata dal rifiuto"

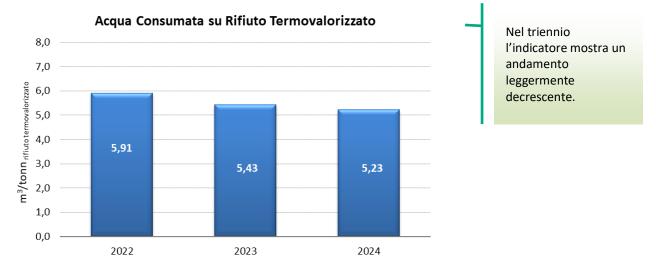
Come riportato anche nel programma ambientale, l'organizzazione è attenta all'individuazione di interventi di efficientamento energetico al fine di migliorare le prestazioni ambientali dei propri impianti (si veda § 14). In particolare, nel corso del 2022 è stato installato il nuovo compressore con inverter che ha permesso di conseguire una riduzione del consumo energetico di circa 65 MWh/anno (pari ad una diminuzione del 17% del consumo annuo legato al funzionamento dell'apparecchiatura) raggiungendo l'obiettivo definito nel programma ambientale (per il dettaglio si rimanda al § 14).

L'impegno di Herambiente nel risparmio delle risorse e abbattimento dei consumi è provato, inoltre, dall'implementazione di un sistema gestionale dedicato al monitoraggio dell'efficienza energetica sulle singole sezioni dell'impianto e mirato al perseguimento del miglioramento continuo delle prestazioni energetiche.

12.2 CONSUMI IDRICI

L'approvvigionamento idrico è garantito unicamente dall'acquedotto consortile, non sono infatti presenti in sito altre fonti di approvvigionamento. La voce principale di consumo della risorsa idrica è rappresentata dall'impianto di raffreddamento delle acque, costituito da un sistema di torri evaporative. Lo spurgo del sistema di raffreddamento viene inviato al depuratore consortile e la restante parte viene dispersa per evaporazione.

Tabella 4 Quantitativi di risorsa idrica utilizzata, consumi annui in m³


Provenienza	Utilizzo	Unità di misura	2022	2023	2024
Acquedotto consortile	Usi industriali e potabili	m³	515.864	490.086	401.249
TOTALE C	m³	515.864	490.086	401.249	

FONTE: PORTALE INFORMATIVO TECNICO (PIT)

Di seguito è riportato l'indicatore "Efficienza di utilizzo della risorsa idrica", calcolato rapportando i consumi idrici alla quantità di rifiuto termovalorizzato. Nel triennio di riferimento l'indicatore evidenzia un andamento lievemente decrescente; in particolare si segnala che il consumo minore rilevato nel 2024 è ascrivibile in parte alla diminuzione del quantitativo del rifiuto in ingresso.

Relazione Tecnica (TV 01 IS QSA-RT 04.00-23) "Efficienza energetica dell'impianto di coincenerimento di Pozzilli (IS)" del 25/07/2023.

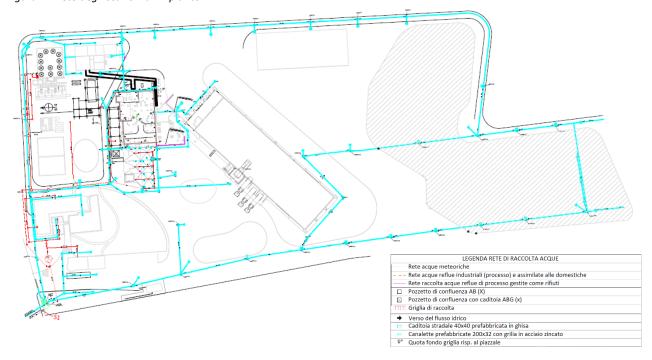
Figura 13 Indicatore "Efficienza di utilizzo della risorsa idrica"

La significatività è da riferirsi al superamento della soglia interna di consumo specifico (per unità di rifiuto trattato).

12.3 SCARICHI IDRICI

Dal processo produttivo si generano i seguenti flussi:

- acque di raffreddamento derivanti dalle attività delle torri evaporative;
- acque di rigenerazione delle resine a scambio ionico;
- acque reflue domestiche e assimilate dai servizi igienici dello stabilimento;
- acque di spurgo della caldaia.


Le acque di dilavamento piazzale (prima pioggia) sono separate da quelle di seconda pioggia e convogliate, attraverso il punto di immissione S1 nella condotta che recapita i reflui industriali al depuratore consortile e scaricate come previsto dal Regolamento Consortile. Le acque reflue di seconda pioggia sono invece convogliate alla rete acque bianche e non sono soggette a campionamento. In Figura 14 è rappresentata la rete degli scarichi di impianto.

Si segnala che nel corso del 2022 sono state completate le opere di modifica del sistema di raccolta delle acque meteoriche, approvate dal Consorzio per lo Sviluppo Industriale di Isernia-Venafro⁸ e operative da agosto 20229, che hanno visto la realizzazione di un sistema automatizzato per la separazione delle acque reflue di dilavamento (prime piogge) dalle successive acque meteoriche di dilavamento (seconde piogge).

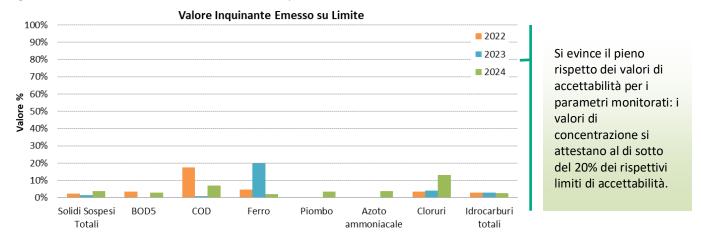
⁸ Protocollo n. 42/2022 del 07/01/2022.

⁹ Comunicazione Herambiente Prot. n. 10663/22 del 26/08/2022.

Figura 14 Rete degli scarichi di impianto

La qualità dei reflui immessi è valutata tramite analisi commissionate a laboratori accreditati con frequenza semestrale. Si riportano in Tabella 5 gli esiti dei rilievi effettuati nel periodo di riferimento allo scarico S1 con i relativi valori di accettabilità definiti dal Regolamento consortile, il profilo fornito è solo parziale in quanto le analisi effettuate riguardano oltre 40 parametri. Si evince la piena conformità con concentrazioni degli inquinanti significativamente inferiori ai valori di accettabilità consortili e con valori in linea con i dati storici.

Tabella 5 Analisi degli scarichi idrici – media annua


PARAMETRO	U.M.	Valore di accettabilità*	2022	2023	2024
Solidi Sospesi Totali	mg/l	200	4,6	3,1	7,8
BOD ₅	mg/l	250	9,0	<1	7,5
COD	mg/l	500	86,85	3,97	35
Ferro	mg/l	4	0,19	0,79	0,08
Piombo	mg/l	0,3	0,00038	0,00077	0,011
Azoto ammoniacale	mg/l	30	0,07	0,08	1,10
Cloruri	mg/l	1.200	41,3	48,6	157
Idrocarburi totali	mg/l	10	0,30	<0,59	<0,5

FONTE: AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Nella seguente figura si riporta l'andamento temporale dell'indicatore "Posizionamento rispetto al limite", che illustra il posizionamento dei parametri rilevati rispetto ai relativi valori di accettabilità.

^{*} Valore di accettabilità del Regolamento Consortile.

Figura 15 Andamento dell'indicatore "Posizionamento Rispetto al Limite"

12.4 SUOLO E SOTTOSUOLO

All'interno del sito si rilevano le seguenti fonti potenziali di contaminazione:

- serbatoi fuori terra per lo stoccaggio del gasolio e reagenti per il processo di demineralizzazione;
- fusti per il contenimento di additivi e oli utilizzati nelle attività di manutenzione;
- sili per il contenimento dei reagenti e per il processo di depurazione dei fumi;
- depositi temporanei dei rifiuti di risulta dai processi svolti nel sito (scorie, ceneri leggere, rottami ferrosi, ecc.)
- vasca interrata di contenimento acque di spegnimento delle scorie.

Il sistema di gestione ambientale, al fine di minimizzare tutti i potenziali rischi di contaminazione del suolo, prevede una serie di controlli e l'utilizzo di presidi ambientali, quali:

- prove di tenuta della vasca interrata;
- controlli periodici sui corpi tecnici contenenti i reagenti e sui rispettivi bacini di contenimento;
- procedure e istruzioni che gestiscono eventuali situazioni di emergenza ambientale (sversamenti o fuoriuscite di sostanze pericolose o rifiuti, allagamenti e dispersione di sostanze inquinanti, ecc.);
- procedure che disciplinano le attività che potenzialmente possono costituire un rischio ambientale (carico e scarico dei rifiuti e dei reagenti).

Al fine di tener ancor più monitorato tale aspetto, con particolare riferimento alla qualità delle acque sotterranee è stato approvato¹⁰, nell'ottobre 2019 dalla Regione Molise, il Piano di monitoraggio per il suolo e le acque sotterranee che ha previsto l'installazione presso l'impianto di tre piezometri, di cui uno (P0) posto a monte rispetto alla direttrice di flusso delle acque sotterranee e due a valle della stessa (P1 e P2).

Il primo campionamento è stato effettuato ad aprile 2020 ed ha rilevato un'anomalia in due piezometri (PO monte e P2 valle), limitatamente al parametro Manganese. I risultati analitici sono stati trasmessi all'Autorità Competente¹¹ e successivamente si è proceduto ad eseguire due ulteriori campagne analitiche, come indicato dalla procedura di gestione delle anomalie. Entrambi i ricampionamenti hanno confermato la presenza di anomalie, pertanto, contestualmente alla comunicazione degli esiti analitici alle Autorità Competenti¹², si è provveduto a presentare la valutazione dei dati e una proposta di studio di approfondimento sulla qualità delle acque sotterranee al fine di determinare le cause che producono l'alterazione rilevata. Si ipotizzava che l'origine del Manganese fosse riconducibile a una condizione naturale dell'area. A seguito di richiesta di ARPA Molise, è stata predisposta una nuova proposta di indagini integrative¹³ su suolo e acque sotterranee al fine di acquisire ulteriori elementi di conoscenza delle caratteristiche idrogeologiche dell'area e sulla circolazione

¹⁰ Comunicazione Regione Molise protocollata da HERAmbiente n. 18857 del 23/10/2019.

¹¹ Comunicazione Herambiente n. 9360 del 28/05/2020.

¹² Comunicazione Herambiente n. 13547 del 06/08/2020.

¹³ Comunicazione Herambiente n. 18146 del 18/11/2021.

idrica nel sottosuolo dell'area dello stabilimento. Arpa Molise ha espresso parere favorevole¹⁴ alle indagini, che sono state successivamente svolte nel corso del 2022.

Dalle indagini è stato riscontrato, per il parametro Manganese, il rispetto dei limiti sia nelle acque sotterranee che nel suolo/sottosuolo mentre per il parametro Arsenico è emerso in campioni di terreno, il superamento della CSC di riferimento (Tab.1, colonna B, Allegato 5, titolo V, parte IV del D.Lgs. 152/06 e s.m.i.). Il Gestore ha pertanto provveduto alla comunicazione¹⁵ di potenziale contaminazione come soggetto non responsabile ai sensi dell'art. 245 del D.Lgs. 152/06 e s.m.i., ritenendo che il superamento non è ascrivibile alle attività ubicate nell'area impiantistica ed ipotizzando che l'origine dell'arsenico sia di tipo geogenico, ossia riconducibile alle caratteristiche geologiche dei terreni locali. In seguito all'attivazione della procedura, in collaborazione con gli Enti e con il supporto di ARPA Molise, è stata elaborata e presentata¹⁶ una proposta di piano di indagine di area vasta per la determinazione dei valori di fondo nei suoli. Successivamente, la Regione Molise¹⁷ ha richiesto agli Enti competenti parere in merito alla proposta di Piano di indagine e, attualmente, il Gestore è in attesa di un riscontro.

Considerata la tipologia di impianto, è stato preso in considerazione anche l'apporto al suolo degli inquinanti provenienti dalle emissioni atmosferiche del termovalorizzatore. Fra le prescrizioni dell'Autorizzazione Integrata Ambientale è stato infatti introdotto il monitoraggio della qualità dell'aria in termini di ricaduta al suolo degli inquinanti: a tal fine è stato predisposto uno Studio¹⁸ per la definizione dei punti di monitoraggio e le modalità di gestione degli strumenti di misura. I Monitoraggi della Qualità dell'Aria sono stati effettuati presso tre punti concordati con Arpa Molise nei pressi dell'impianto nelle stagioni climatiche invernale, primaverile, estiva ed autunnale del 2017 e del 2018. I monitoraggi eseguiti hanno confermato, come riportato nella relazione tecnica conclusiva, trasmessa¹⁹ alle Autorità Competenti, l'assenza di correlazione diretta tra l'esercizio dell'impianto in oggetto e lo stato di qualità dell'aria nell'area di studio.

Per quanto riguarda l'utilizzo del terreno, si veda Tabella 12 al § 12.14.

12.5 EMISSIONI IN ATMOSFERA

La trattazione che segue distingue le emissioni del sito in convogliate, diffuse ed emissioni di gas serra. Le emissioni convogliate si differenziano dalle diffuse per il fatto di essere immesse nell'ambiente esterno tramite l'ausilio di un sistema di convogliamento. Le emissioni di gas serra comprendono invece le emissioni di composti noti per il loro contributo al fenomeno del riscaldamento globale (anidride carbonica, metano ecc.). L'aspetto è considerato significativo sia in condizioni ordinarie, per il superamento della soglia PRTR per il parametro anidride carbonica e ossidi di azoto, che in condizioni di emergenza e transitorie (es. guasti del sistema di monitoraggio in continuo).

12.5.1 Emissioni convogliate

All'interno del sito si identificano le seguenti emissioni convogliate:

- emissioni della linea di incenerimento (E1);
- emissioni previste in condizioni di emergenza dal funzionamento del gruppo elettrogeno.

Le emissioni principali del sito sono quelle prodotte senza dubbio dalla linea di incenerimento e sono monitorate secondo quanto previsto dalla normativa vigente in materia attraverso:

Sistema di Monitoraggio in continuo delle Emissioni (SME) che garantisce, 24 ore su 24, il prelievo e l'analisi di macroinquinanti (polveri, ossido di azoto, acido cloridrico, ossido di zolfo, carbonio organico totale, monossido di carbonio, anidride carbonica ed ammoniaca), mercurio e di parametri di processo quali temperatura, tenore di ossigeno, tenore di umidità, portata e pressione dei fumi;

¹⁴ Comunicazione ARPA Molise N. 2142/2022 del 10/02/2022.

¹⁵ Comunicazione Herambiente Prot. 11897/22 del 26/09/2022.

¹⁶ Comunicazione Herambiente Prot. 1599/23 del 02/02/2023.

¹⁷ Comunicazione Regione Molise n. 24367/2023 del 07/02/2023

¹⁸ Comunicazione HERAmbiente Pg. n. 9277 del 16/05/2017.

¹⁹ Comunicazione HERAmbiente Pg. n. 0003191 del 18/02/2019.

monitoraggio periodico a mezzo di campagne analitiche sui microinquinanti (PCDD/PCDF, IPA, PCB-DL), macroinquinanti e metalli pesanti, con frequenza quadrimestrale.

Come da prescrizioni dell'autorizzazione vigente, l'organizzazione ha inoltre installato e attivato la strumentazione per il campionamento automatico di lungo periodo dei microinquinanti:

- PCDD+PCDF (policlorodibenzodiossine + policlorodibenzofurano);
- ▶ IPA (idrocarburi policiclici aromatici);
- ▶ PCB DL (policlorobifenili Dioxin-like).

Il sistema di monitoraggio in continuo delle emissioni (SME) è periodicamente tarato e verificato. I dati sono adoperati per il feedback dall'impianto di dosaggio automatico dei reattivi necessari per l'abbattimento degli inquinanti. Le concentrazioni delle emissioni monitorate tramite il sistema SME sono costantemente sotto il controllo degli operatori del centro tramite un sistema di sorveglianza dotato di preallarmi che si attivano qualora il parametro rilevato raggiunga l'80% del limite, per prevenire eventuali situazioni critiche. È presente, anche, un secondo analizzatore di back-up a caldo sempre in funzione che assicura, in caso di avaria del sistema di monitoraggio in continuo, la continuità della misura.

Si prevede, inoltre, come riportato nel programma ambientale (§ 14) al quale si rimanda per il dettaglio, l'upgrading nel prossimo triennio del nuovo sistema di monitoraggio in continuo delle emissioni che consentirà un livello di accuratezza e di rilevabilità ancora più spinto, a questo obiettivo si aggiunge anche l'installazione di un campionatore per il monitoraggio al camino della CO₂ di origine biogenica.

L'organizzazione si attiene, inoltre, al Piano di Monitoraggio e controllo imposto dall'Autorizzazione Integrata Ambientale per la verifica del rispetto dei limiti previsti nelle emissioni. Periodicamente gli Enti di controllo preposti procedono a verifiche in loco con campionamenti ed analisi sulle emissioni per la verifica del rispetto dei limiti imposti agli inquinanti.

Le concentrazioni degli inquinanti immesse in atmosfera, calcolate su media annuale, sono riportate nella tabella seguente.

Tabella 6 Emissioni al camino – media annua

PARAMETRO	U.M.	LIMITE di AIA	2022	2023	2024
CO ⁽¹⁾	mg/Nm³	30	5,7	4,9	5,0
Polveri (1)	mg/Nm³	5	0,1	0,03	0,004
COT (1)	mg/Nm³	5	0,5	0,8	0,7
HCI (1)	mg/Nm³	8	6,41	6,3	6,0
SO ₂ (1)	mg/Nm³	20	8,55	9,86	9,47
NH ₃ ⁽¹⁾	mg/Nm³	5	2,53	1,89	2,27
NO _x (1)	mg/Nm³	170	154,94	152,55	153,65
CO ₂ (1)	%vol	-	7,9	7,2	7,2
Metalli (2)	mg/Nm³	0,3	0,0185	0,025	0,019
PCDD/DF (2)	ng/Nm³ (I-TEQ)	0,05	0,0013	0,0013	0,0022
IPA ⁽²⁾	mg/Nm³	0,005	0,00002	0,00001	0,00001
Mercurio ⁽¹⁾	mg/Nm³	0,02	0,0002	0,0006	0,0002
Cadmio + Tallio (2)	mg/Nm³	0,03	0,001	0,001	0,001
PCB-DL (2)	ng/Nm³ (I-TEQ)	0,05	0,0001	0,0004	0,0009

(1) FONTE: SISTEMA MONITORAGGIO IN CONTINUO

(2) DATO UPPER BOUND (utilizzando i dati <LR come LR) nel 2022-2023 mentre MEDIUM BOUND nel 2024 – AUTOCONTROLLI DA PIANO DI MONITORAGGIO

Nel grafico seguente sono riportati i valori di concentrazione media annua in uscita al camino e i corrispondenti limiti autorizzativi relativi al triennio di riferimento. Le concentrazioni in uscita dai camini rispettano ampiamente i limiti; dall'osservazione del grafico si può notare, infatti, come la maggior parte degli inquinanti presenta valori ampiamente inferiori al limite in tutti gli anni di osservazione, con alcuni parametri inferiori anche di un ordine di grandezza.

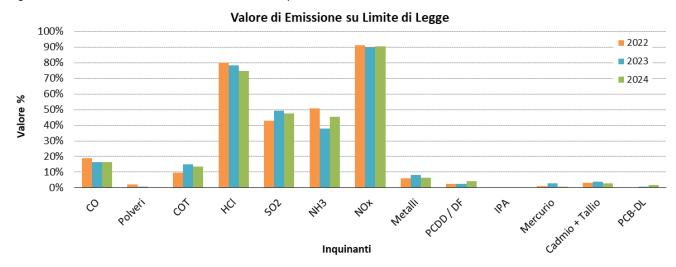


Figura 16 Andamento dell'indicatore "Posizionamento rispetto al limite"

Il tema della prevenzione dell'inquinamento e l'impegno dell'organizzazione a minimizzare l'impatto ambientale dell'impianto trova applicazione anche nel programma ambientale (si veda § 14) in cui sono presenti obiettivi rivolti ad efficientare e migliorare le linee di trattamento fumi.

In particolare, per ridurre l'emissione di polveri è stata installata nei filtri a maniche una nuova tipologia di maniche filtranti provviste di membrane con una elevata capacità di trattenere le polveri. Inoltre, si prevede di ottimizzare il sistema di trattamento Denox SNCR, al fine di conseguire una riduzione dei reagenti e garantire migliori prestazioni ambientali sul trattamento degli inquinanti ed in particolare degli NOx.

Una valutazione completa delle emissioni non può prescindere da considerazioni in termini di flussi di massa, ovvero quantitativi assoluti di inquinante, in peso, immessi nell'ambiente.

Taballa	7 Flussi di massi	a nar i nrincina	uli naramatri al	camina

Parametro	U.M.	Soglia PRTR	2022	2023	2024
Polveri	kg/a	50.000(*)	677	451	242
Acido cloridrico	kg/a	10.000	6.466	6.833	5.602
Ossido di azoto	kg/a	100.000	131.384	141.846	123.194
Ossidi di zolfo	kg/a	150.000	7.786	9.472	7.783
Monossido di carbonio	kg/a	500.000	5.825	5.491	4.444
Carbonio organico totale	kg/a	100.000(**)	1.007	1.356	1.132
Idrocarburi policiclici aromatici	kg/a	50	0,02	0,01	0,004
Diossine e furani	mg/a in Teq	100	0,90	1,08	0,97
Mercurio	kg/a	10	0,17	0,59	0,74

^(*) SOGLIA DI EMISSIONE PRTR SU PARAMETRO "PM10"

^(**) SOGLIA DI EMISSIONE PRTR SU PARAMETRO "COMPOSTI ORGANICI NON METANICI"

I dati annuali vengono confrontati con le Soglie di Emissione individuate dal "Registro Integrato delle Emissioni e dei Trasferimenti di Sostanze Inquinanti" (PRTR). Non si tratta di limiti di legge o prescrittivi, ma di valori di riferimento che, se superati, debbono essere comunicati ad ISPRA, che li inserisce nel Registro nazionale ed europeo. I valori calcolati risultano decisamente inferiori alle soglie indicate per tutti i parametri eccetto per quanto riguarda l'NOx. L'aspetto, quindi, è considerato significativo per il suddetto parametro.

Nelle successive rappresentazioni grafiche si illustrano gli andamenti dell'indicatore "Fattore di Emissione Specifico" ovvero le quantità di emissioni per unità di rifiuto incenerito. Le rappresentazioni grafiche evidenziano, nel triennio di riferimento, un andamento lievemente variabile non ascrivibile a particolari situazioni. Nel caso dei microinquinanti la variabilità è anche influenzata dalla prossimità dei valori riscontrati ai limiti di rilevabilità degli strumenti.

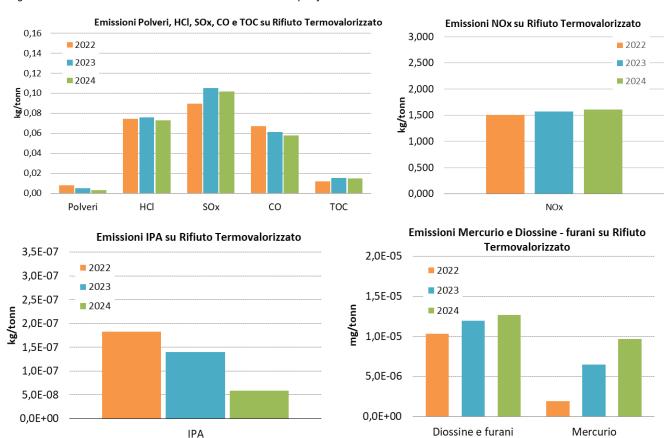


Figura 17 Andamento dell'indicatore "Fattori di Emissione Specifici"

12.5.2 Emissioni diffuse

Nel sito si identificano emissioni diffuse di entità del tutto trascurabile che vengono verificate tramite campionamenti condotti presso sei punti dell'impianto posti in corrispondenza delle zone ritenute più significative (stoccaggio rifiuti, carico ceneri leggere, carico scorie, pesa, forno, pulizia surriscaldatori). Dai risultati delle analisi, condotte da laboratorio accreditato nel mese di dicembre 2024, non sono emerse criticità.

12.5.3 Emissioni ad effetto serra

Il fenomeno dell'effetto serra è dovuto all'innalzamento della concentrazione atmosferica dei cosiddetti gas serra (anidride carbonica, metano, protossido di azoto, ecc.) ovvero gas in grado di assorbire la radiazione infrarossa provocando, conseguentemente, un riscaldamento globale.

Per contrastare il fenomeno, nel 1997 è stato varato il Protocollo di Kyoto, un accordo internazionale di natura volontaria entrato in vigore nel 2005 che impegnava gli Stati firmatari ad una riduzione quantitativa delle proprie emissioni dei gas climalteranti rispetto ai livelli del 1990. Successivamente, con l'accordo Doha, il

Protocollo di Kyoto è stato esteso al 2020 ("Kyoto2") anziché alla fine del 2012. Il periodo post-2020 è regolato dall'Accordo di Parigi sul clima, raggiunto il 12 dicembre 2015 alla Conferenza annuale dell'Onu sul riscaldamento globale (Cop 21) ed entrato in vigore il 4 novembre 2016, che definisce quale obiettivo di lungo termine il contenimento dell'aumento della temperatura. Agli accordi internazionali, sono seguite le politiche e le misure attuate dall'Unione Europea al fine di dare attuazione agli impegni assunti per la riduzione delle emissioni di gas ad effetto serra.

L'utilizzo di rifiuti come fonte energetica può rappresentare uno strumento per limitare le emissioni di CO₂ e concorrere al raggiungimento dell'obiettivo nazionale. Infatti, rispetto alle fonti tradizionali di produzione energetica, la combustione del rifiuto contribuisce in maniera decisamente più contenuta all'effetto serra.

Il carbonio contenuto nei rifiuti urbani è prevalentemente di origine biogenica. Pertanto, la CO₂ che viene emessa in seguito alla loro combustione è per la maggior parte considerata neutra ai fini del budget globale planetario poiché si tratta proprio della reimmissione di quella quota di anidride carbonica precedentemente sottratta all'atmosfera dal mondo vegetale per la crescita (fotosintesi clorofilliana). Tali considerazioni sono alla base dell'esclusione degli impianti di termovalorizzazione di rifiuti urbani dal campo di applicazione della Direttiva (DIR 2018/410/CE)²⁰ in materia Emission Trading secondo quanto indicato dal D.Lgs. n. 47/2020, che ha recepito la direttiva nell'ordinamento italiano.

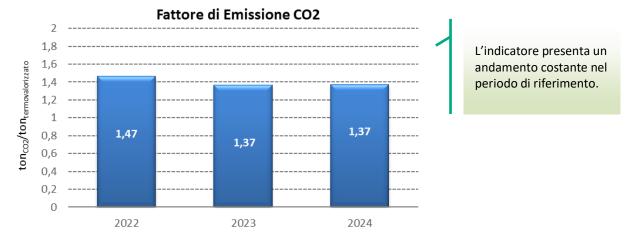
Una recente modifica della Direttiva ETS (2003/87/CE) che regola lo scambio di quote di emissione dei gas ad effetto serra nell'Unione Europea (Emission Trading System) impone tuttavia che a decorrere dal 01/01/2024 gli inceneritori per rifiuti urbani dell'UE con potenza termica nominale superiore a 20 MW attivino il monitoraggio delle emissioni di CO₂ ai fini della loro successiva rendicontazione.

Sulla base degli esiti di tale monitoraggio, entro il 31 luglio 2026 la Commissione presenterà al Parlamento Europeo e al Consiglio una relazione in cui valuterà la fattibilità dell'inclusione degli impianti di incenerimento dei rifiuti urbani nell'EU ETS a partire dal 2028, valutando la potenziale necessità di consentire agli Stati membri di non partecipare fino al 31 dicembre 2030. In tale contesto, a decorrere dal 01/01/2024, Herambiente ha avviato un programma di monitoraggio e rendicontazione delle emissioni di CO₂ non biogenica emessa dai propri termovalorizzatori in conformità con quanto stabilito dalla Direttiva.

Di seguito si riporta il flusso di massa relativo all'anidride carbonica, espresso in termini di tonnellate emesse per anno, calcolato direttamente dalle emissioni al camino. I quantitativi riportati rappresentano una sovrastima in quanto non discriminano tra "CO₂ ad effetto serra" e "CO₂ non ad effetto serra". La quota di CO₂ che contribuisce effettivamente all'effetto serra, per le motivazioni sopra espresse, è notevolmente inferiore.

Tabella 8 Flussi di massa della CO₂

 Punto di emissione
 U.M.
 Soglia PRTR
 2022
 2023
 2024


 Camino
 tonn/a
 100.000
 127.927
 123.417
 105.429

FONTE: REPORT INTERNI/SME

Come visibile dalla tabella sopra riportata, il termovalorizzatore supera la soglia PRTR "Pollutant Release and Transfer Registers" e, pertanto, i dati indicati in tabella rientrano nella dichiarazione annuale PRTR. Di seguito si riporta l'indicatore "Fattore di emissione dei gas serra", inteso come quantità di CO₂ emessa per unità di rifiuto termovalorizzato.

²⁰ Direttiva (UE) 2018/410 del Parlamento europeo e del Consiglio, del 14 marzo 2018, che modifica la direttiva 2003/87/CE per sostenere una riduzione delle emissioni più efficace sotto il profilo dei costi e promuovere investimenti a favore di basse emissioni di carbonio e la decisione (UE) 2015/1814.

Figura 18 Andamento dell'indicatore "Fattori di emissione dei gas serra"

12.6 GENERAZIONE ODORI

Il sito è ubicato in aree destinate ad attività produttive con assenza di recettori sensibili nel suo intorno. Le potenziali fonti di emissioni odorigene sono le seguenti:

- il capannone di stoccaggio dei rifiuti comprensivo dell'antistante area adibita alla movimentazione degli automezzi:
- gli automezzi, sia carichi che scarichi, adibiti al trasporto rifiuti.

Le emissioni odorigene provenienti dal capannone di stoccaggio dei rifiuti sono mantenute sotto controllo dagli impianti di aspirazione che convogliano direttamente in griglia di combustione. Il controllo costante degli impianti di aspirazione, l'attenta gestione del carico e scarico e le procedure di movimentazione, che impongono di tenere sempre le porte del capannone chiuse, consentono di minimizzare questo aspetto ambientale. Come già riportato al § 10.2, nel capannone di deposito è anche presente un sistema ad enzimi, al fine di minimizzare lo sviluppo di odori e batteri.

Nell'ambito del sistema di gestione ambientale, inoltre, si tengono monitorati gli eventuali reclami pervenuti dall'esterno. Durante il periodo in esame non sono pervenuti reclami o segnalazioni in materia di odori.

12.7 CONSUMO DI RISORSE NATURALI E PRODOTTI CHIMICI

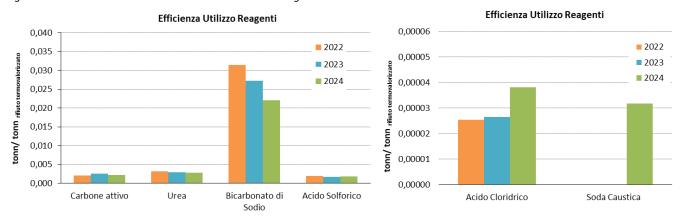
Le materie prime utilizzate all'interno del sito si distinguono principalmente in:

- reagenti funzionali al sistema di abbattimento degli inquinanti nei fumi;
- reagenti funzionali a garantire determinati requisiti delle acque del circuito termico e di raffreddamento per evitare fenomeni di incrostazione e depositi.

In termini quantitativi, le materie prime più significative utilizzate in impianto si riferiscono al ciclo di depurazione fumi. Tali reagenti agiscono su più stadi della depurazione in sinergia con più processi di filtrazione e permettono, tramite specifiche reazioni chimiche (neutralizzazioni, adsorbimenti, catalisi), la decomposizione delle molecole inquinanti presenti nei fumi.

Nella seguente tabella e in Figura 19 sono rappresentati gli andamenti dei chemicals rispettivamente in valore assoluto ed in rapporto ai quantitativi di rifiuti termovalorizzati. Questo dato in generale è fortemente influenzato dalle caratteristiche dei rifiuti inviati a termovalorizzazione.

I consumi risultano variabili nel triennio di riferimento. Nel 2022, il consumo di bicarbonato di sodio risulta in leggero aumento, in relazione alla maggiore richiesta di abbattimento di SOx e HCl nell'emissione del camino. Si osserva invece una leggera flessione nel triennio di riferimento nel consumo di urea dovuta all'efficientamento realizzato sul sistema di abbattimento degli NOx che ha previsto un'ottimizzazione nel dosaggio della stessa sulla base della temperatura in caldaia. Limitatamente al 2023, si osserva un leggero incremento nel consumo di carbone attivo, utilizzato per ottenere un migliore abbattimento dei microinquinanti e metalli nell'emissione, ed una lieve flessione nel consumo di acido solforico, utilizzato per la regolazione del pH delle acque del sistema di raffreddamento.

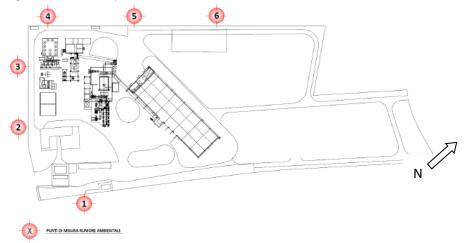

Tabella 9 Tipologie e quantitativi di materie prime acquistate

MANTEDIA DDIMAA	FUNCTIONS DULITH 1770	CONSUMO (tonn/a)			
MATERIA PRIMA	FUNZIONE DI UTILIZZO	2022	2023	2024	
Carbone attivo	Depurazione fumi (abbattimento microinquinanti e metalli)	178	229	164	
Urea	Depurazione fumi (abbattimento NOx)	278,7	258	209,7	
Bicarbonato di Sodio	Depurazione fumi (abbattimento HCl, HF, SO_2)	2.742,7	2.461	1.688	
Acido Cloridrico	Impianto Demineralizzazione Acque	2,21	2,39	2,93	
Acido Solforico	Torri raffreddamento	172,79	154,97	144,22	
Soda Caustica	Impianto Demineralizzazione Acque	0	0	2,4	

FONTE: REPORT INTERNI

L'indicatore "Fattore di utilizzo reagenti", relativo ai consumi specifici di reagenti necessari al trattamento in oggetto per unità di rifiuto termovalorizzato, evidenzia un andamento lievemente variabile nel triennio per le motivazioni sopra riportate.

Figura 19 Andamento dell'indicatore "Fattore di utilizzo reagenti"


12.8 RUMORE

In ottemperanza all'autorizzazione, che prevede l'esecuzione della valutazione di impatto acustico con frequenza triennale o ad ogni modifica significativa dell'assetto impiantistico, a marzo 2024 si è provveduto ad effettuare il controllo periodico del rumore immesso in ambiente esterno al fine di verificare la conformità con i valori limite previsti dalla normativa di riferimento.

Il comune di Pozzilli (IS) non ha ancora effettuato la zonizzazione acustica del proprio territorio per l'individuazione dei valori limite di rumore in ambiente esterno. In assenza della suddetta zonizzazione di cui al D.P.C.M. del 14/11/1997 si fa riferimento alla specifica tabella C del D.P.C.M. 1/3/1991.

Considerata la destinazione urbanistica del territorio, tenuto conto della classificazione effettuata nella tabella del D.P.C.M. 1/3/1991, il sito impiantistico è da considerarsi in Classe VI – Aree esclusivamente industriali, il cui valore limite di immissione assoluto è di 70 dB (A) nel periodo diurno e 70 dB(A) nel periodo notturno, con esonero dalla misura del rumore differenziale, accertata l'assenza di civili abitazioni e trattandosi di impianto a ciclo continuo. I rilievi fonometrici sono stati condotti pertanto sia in periodo di riferimento diurno che notturno considerato il regime di lavorazione a ciclo continuo presso 6 punti posti sul perimetro dello stabilimento, riportati in Figura 20.

Figura 20 Planimetria punti di misura

I valori rilevati nei punti di misura sono stati riportati nella Tabella 10.

Tabella 10 Riepilogo valori di rumore ambientale diurno

PUNTO DI RILEVAZIONE	Periodo di riferimento	Limite di immissione dB(A)	Livello rilevato dB(A) (dato rilevato)
1	Diurno	70	56,0
1	Notturno	70	54,0
2	Diurno	70	62,0
2	Notturno	70	62,0
2	Diurno	70	68,0
3	Notturno	70	69,0
4	Diurno	70	69,0
4	Notturno	70	68,0
F	Diurno	70	66,0
5	Notturno	70	65,0
6	Diurno	70	54,0
6	Notturno	70	54,0

FONTE: RELAZIONE ACUSTICA DEL 15/04/2024

La valutazione, condotta secondo la modalità e la frequenza prescritte nel Piano di Monitoraggio e Controllo dell'AIA, ha evidenziato per tutti i punti di misura il rispetto dei limiti previsti dalla normativa, in entrambi i periodi di riferimento (diurno e notturno), pertanto non si evidenziano criticità legate all'esercizio dell'impianto. La significatività dell'aspetto deriva dal superamento della soglia interna di attenzione.

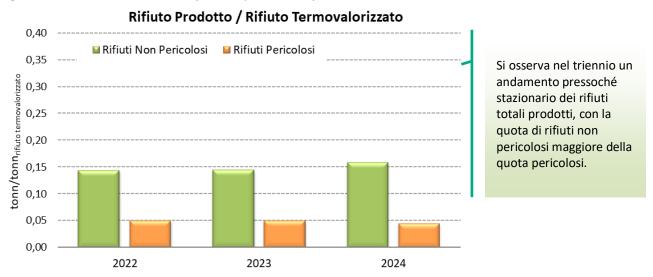
12.9 RIFIUTI IN USCITA

Il sistema di gestione ambientale, in ottemperanza a specifica procedura interna, stabilisce l'attribuzione della significatività all'aspetto "rifiuti in uscita" per tutti gli impianti Herambiente. Di conseguenza il sistema è dotato di specifiche procedure che disciplinano la corretta caratterizzazione/classificazione del rifiuto prodotto ai fini della destinazione finale.

Nell'ambito del complesso impiantistico si possono distinguere le seguenti tipologie di rifiuti:

- principali rifiuti prodotti dall'attività di incenerimento, i cosiddetti rifiuti di processo (scorie, polverino, ecc.);
- rifiuti prodotti dalle attività ausiliarie presenti nel sito (oli esausti, filtri dell'olio, ecc.).

La successiva tabella indica le sezioni impiantistiche da cui si origina il rifiuto, il codice EER, le caratteristiche di pericolosità, i quantitativi e la destinazione finale, distinta in smaltimento o recupero, dei principali rifiuti prodotti correlati al processo produttivo. Si precisa che l'elenco fornito non comprende i rifiuti da manutenzione straordinaria e ordinaria proprio per il loro carattere estemporaneo.


Tabella 11 Rifiuti prodotti dall'attività di termovalorizzazione (espressi in tonnellate)

SEZIONE PRODUZIONE	DESCRIZIONE RIFIUTI	CODICE EER	Pericoloso/ Non Pericoloso	2022	Anno 2023	2024	DESTINAZIONE
Depurazione fumi	Rifiuti liquidi acquosi prodotti dal trattamento dei fumi e di altri rifiuti liquidi acquosi	190106	P	84	176	58	Smaltimento
Forno	Ceneri pesanti e scorie, non pericolose	190112	NP	8.030	8.044	12.176	Recupero
Incenerimento		190112	NP	4.584*	5.034	0	Smaltimento
Denurazione fumi	Ceneri leggere, contenenti sostanze pericolose	190113	Р	4.225	3.357	925	Smaltimento
Depurazione fumi		190113	Р	126	1.047	2.508	Recupero

FONTE: ESTRAZIONE DA SOFTWARE DI GESTIONE RIFIUTI – PESO A DESTINO

Dai dati riportati in tabella si evince che le ceneri pesanti non pericolose rappresentano i maggiori quantitativi di rifiuti prodotti dall'impianto. Relativamente alla destinazione, si segnala che nel corso del triennio di riferimento tali ceneri sono state inviate prevalentemente ad impianti di recupero e, secondariamente, di smaltimento. Le ceneri leggere (pericolose) sono state invece inviate nel biennio 2022-2023 prevalentemente ad impianti di smaltimento mentre nel 2024 si evince un incremento dei quantitativi inviati a recupero. Si riporta di seguito l'indicatore "Rifiuti autoprodotti su rifiuti termovalorizzati".

Figura 21 Andamento dell'indicatore "Rifiuto autoprodotto su Rifiuto trattato"

^{*} Corretto per refuso

12.10 AMIANTO

Nel sito impiantistico non sono presenti strutture o manufatti contenenti amianto.

12.11 PCB E PCT

Dalle analisi effettuate presso le apparecchiature presenti nell'impianto non risulta la presenza di sostanze contenenti PCB e PCT.

12.12 GAS REFRIGERANTI

Nel sito sono presenti 18 impianti, di cui dieci contenenti come refrigerante R410A e R32 in quantità inferiore a 5 tonnellate equivalenti di CO2 e, pertanto, non sottoposti a controllo delle fughe. La rimanente parte contiene gas R407C / R410A in quantità maggiore di 5 tonnellate equivalenti di CO2 e, nel rispetto della normativa vigente, vengono controllati annualmente per verificare l'assenza di perdite. Tali impianti risultano ad oggi perfettamente funzionanti.

Sono presenti, inoltre, tre caldaie per riscaldamento uffici e servizi igienici che vengono monitorate e sottoposte a controlli periodici come previsto dalla normativa vigente.

Presso la cabina elettrica di trasformazione MT/BT sono presenti sei interruttori contenenti ciascuno 250 gr di SF6 (esafluoruro di zolfo) gestititi in conformità alla normativa di riferimento.

12.13 INQUINAMENTO LUMINOSO

Il sito impiantistico è dotato di un impianto di illuminazione esterno perimetrale regolato da sensori crepuscolari, che ne stabiliscono l'accensione e lo spegnimento, mentre l'impianto di illuminazione delle sezioni impiantistiche è solitamente spento durante il periodo notturno, con possibilità di accensione manuale.

A fine 2017 sono stati ultimati gli interventi di sostituzione di tutte le lampade presenti nel capannone CDR e dei corpi illuminanti installati al perimetro dell'impianto con lampade a LED.

12.14 IMPATTO VISIVO E BIODIVERSITÀ

L'area su cui sorge il sito è inquadrata come area produttiva. Il progetto architettonico del sito, stilisticamente rivisitato nel corso dell'adeguamento impiantistico completato nel 2009, si caratterizza per una significativa presenza di aree verdi e piantumate che riduce complessivamente l'impatto visivo del sito.

Per quanto riguarda l'uso del suolo in relazione alla biodiversità, si riporta nella seguente tabella il valore della superficie totale del sito costituita da una quota di superficie coperta/scoperta impermeabilizzata ed una quota restante di superficie dedicata alle aree verdi.

Tabella 12 Utilizzo del terreno

	Superficie totale [m²]	Superficie impermeabilizzata coperta - scoperta [m²]		Superficie aree verdi [m²]	
Area impiantistica	26.732	7.203	13.363	6.166	
Area impianto fotovoltaico	11.860	7.260	3.613	987	

FONTE: MODELLO UNICO DI AGGIORNAMENTO DEGLI ATTI CATASTALI

IL PROGETTO DI BIOMONITORAGGIO CAPIAMO

In aggiunta all'impegno nel monitoraggio degli aspetti ambientali correlati al termovalorizzatore, Herambiente ha realizzato un progetto di più ampio respiro allo scopo di fornire un contributo sull'analisi del contesto ambientale in cui si colloca il sito impiantistico. Nella primavera del 2020 presso il termovalorizzatore di Pozzilli (IS) è stato attivato il progetto di biomonitoraggio CAPIAMO.

Il biomonitoraggio è uno strumento di controllo con varie applicazioni nel campo degli studi ambientali. Permette di valutare gli effetti dell'inquinamento mediante bioindicatori, ovvero specie animali, piante o funghi particolarmente sensibili a cambiamenti provocati

dall'inquinamento dell'ecosistema e in grado di segnalare precocemente l'insorgenza di squilibri pericolosi per la biodiversità e per la salute umana. Le attività promosse da CAPIAMO²¹ hanno coinvolto 3 alveari installati da Herambiente all'interno del proprio termovalorizzatore di Pozzilli, allo scopo di osservare e studiare lo stato di salute delle api nell'area circostante caratterizzata da attività industriali e piccoli centri agricoli abitati.

CAPIRE L'AMBIENTE

Le api sono creature molto sensibili ai cambiamenti ambientali causati da agenti inquinanti e riescono a segnalare precocemente l'insorgenza di squilibri pericolosi per la biodiversità, per l'ecosistema e per la salute umana. Inoltre, l'ape come biondicatore offre molte informazioni utili sia a breve che a lungo termine: il miele, infatti, permette di valutare l'inquinamento nel breve periodo, in quanto costituisce il primo prodotto

in cui possono accumularsi i contaminanti; la cera, invece, consente di valutare i livelli di inquinamento a lungo termine, in quanto per la sua natura lipidica può assorbire e trattenere i contaminanti non volatili, lipofili e persistenti.

Grazie a un'accurata indagine eco-tossicologica è possibile conoscere e quantificare gli eventuali effetti dell'impatto antropico sull'ambiente, anche attraverso lo studio dello stato sanitario degli sciami.

CONOSCERE LE API

Per monitorare la qualità dell'ambiente, CAPIAMO ha svolto 2 analisi all'anno (giugno e settembre 2020, giugno e settembre 2021) sulla popolazione delle api e sulla qualità dei prodotti dell'alveare.

Sugli alveari vengono svolte analisi bio-morfometriche e controlli medico veterinari per verificare la salute e la produttività delle api, limitare i fenomeni di sciamatura, posizionare e rimuovere i melari, campionare il

miele e gli altri prodotti dell'alveare. Questi ultimi sono sottoposti ad analisi chimiche presso laboratori accreditati Accredia: qui si eseguono analisi necessarie a determinare l'eventuale presenza di tossine, metalli, pesticidi, anioni, IPA, diossine, furani e PCB.

Le api, nel corso delle loro migrazioni giornaliere, sono esposte a tutti gli inquinanti chimici potenzialmente presenti nelle matrici con cui entrano in contatto localmente. L'*Apis mellifera*, infatti, si muove giornalmente su un'area di 7 km² e nel suo territorio effettua circa 10.000 prelievi dalle matrici ambientali che incontra (acqua, aria, suolo). Tornando all'alveare, trasporta queste sostanze influenzando la produzione di miele, propoli, cera, polline e pappa reale.

I RISULTATI DEL PROGETTO

La prima fase di campionamento e analisi 2020 ha dato ottimi risultati. La presenza di anioni (cloruri, solfati e nitrati) nel miele raccolto all'impianto è in linea con i valori medi dei mieli di origine italiana. É stata riscontrata la sostanziale assenza di diossine, Pcb e pesticidi, mentre le analisi sugli idrocarburi policiclici aromatici (Ipa), che hanno come principale fonte la combustione di carburanti fossili, l'incenerimento dei rifiuti, la produzione di energia o di asfalto e prodotti chimici, mostrano una condizione ambientale a cui contribuiscono più sorgenti emissive come traffico, industria, riscaldamento domestico a biomasse, ecc, tipiche dell'antropizzazione del territorio senza che si evidenzi un

²¹ Il progetto CAPIAMO è condotto in collaborazione con la Dott.ssa Serena Maria Rita Tulini, medico veterinario specializzato in Farmacologia e Tossicologia Veterinaria.

contributo significativo da parte del termovalorizzatore. Anche i metalli presenti sono riconducibili alla presenza di cantieri edili abbandonati, industrie e infrastrutture.

Anche la seconda fase di campionamento e analisi 2020 ha confermato gli ottimi risultati osservati nella prima. Le indagini sui campioni di miele hanno mostrato la totale assenza di diossine, IPA, PCB e pesticidi. La cera analizzata a settembre si mostra esente da diossine, PCB e pesticidi con tracce di IPA ampiamente inferiori ai limiti fissati dalla normativa per oli e grassi di origine animale nel settore alimentare. La presenza dei metalli sia nel miele che nella cera è riconducibile alle tipicità del territorio, caratterizzato dall'abbondanza di marna e dolomite, e alla presenza di diverse attività antropiche. In entrambe le campagne i campioni di miele hanno evidenziato la totale assenza di piombo.

Il progetto si è concluso nel 2021 con i campionamenti e analisi svolti a giugno e settembre che hanno mostrato esiti sovrapponibili a quelli del 2020. Il progetto rappresenta un'ulteriore garanzia a beneficio e tutela della comunità e del territorio che ospitano l'impianto.

12.15 RADIAZIONI IONIZZANTI E NON

All'interno del sito in esame, è stata effettuata la misurazione del campo elettromagnetico in prossimità delle apparecchiature elettriche rilevanti, tra le quali ad esempio la cabina di trasformazione dell'energia elettrica da media a bassa tensione e l'alternatore per la produzione di energia elettrica. Dai risultati delle misurazioni effettuate, non sono emerse delle criticità.

12.16 RISCHIO INCIDENTE RILEVANTE

Il complesso industriale non è un'attività che determina la presenza reale o potenziale di sostanze pericolose in quantità tale da farlo rientrare fra quelle a rischio di incidente rilevante, ai sensi del D.Lgs. 26 giugno 2015, n. 105 e s.m.i..

12.17 RISCHIO INCENDIO

Relativamente al rischio incendio, l'organizzazione ha presentato, in data 19/10/2017, al Comando Provinciale dei Vigili del Fuoco di Isernia, attestazione di rinnovo periodico di conformità antincendio²², ai sensi dell'art. 5 del D.P.R. n. 151 del 01/08/2011, dichiarando l'assenza di variazioni delle condizioni di sicurezza antincendio. Il Certificato Prevenzione Incendio è stato rinnovato a seguito di sopralluogo del VVF cui è seguita, nel mese di ottobre 2022, richiesta di rinnovo periodico (Pratica VV.F. n. 5457). Le attività²³ comprendono depositi di liquidi e impianti di produzione di calore, gruppi elettrogeni, apparecchiature che presentano pericolo di incendio, ecc.

Presso l'impianto è presente un registro antincendio in cui sono riportati i controlli periodici da effettuare per mantenere efficienti e funzionali tutti i presidi antincendio (estintori, idranti, porte tagliafuoco, illuminazione di emergenza, ecc.). Il possibile verificarsi di un incendio viene gestito, secondo modalità riportate nel piano di emergenza interno, dalla squadra di emergenza costituita da personale adeguatamente formato in conformità a quanto previsto dal D.M. 10/03/1998 in materia antincendio, sostituito a partire da ottobre 2022 dal D.M. 02/09/2021, e dal D.M n. 388 del 15/07/2003 per quanto riguarda il primo soccorso. Inoltre, tutto il personale è coinvolto in simulazioni di emergenza.

Si segnala che nel triennio di riferimento non si sono verificati casi di incendio presso il complesso impiantistico in oggetto.

²² Prot. VV.F. n. 5457 del 19/10/17: attestazione di rinnovo periodico di conformità antincendio.

²³ Campo di applicazione ai sensi dell'All. 1 del DPR n. 151 del 01/08/2011: Attività n° 48, 2, 70, 74, 49.

Figura 22 Una veduta dall'alto del termovalorizzatore

13 ASPETTI AMBIENTALI INDIRETTI

La valutazione degli aspetti ambientali è stata integrata con l'analisi degli aspetti ambientali indiretti derivanti principalmente dall'interazione dell'azienda con imprese terze appaltatrici. Il sistema di gestione integrato prevede un processo di qualificazione e valutazione dei fornitori il cui operato è soggetto ad un costante controllo.

Traffico e viabilità

Le attività che si svolgono quotidianamente all'interno del sito comportano la movimentazione di un numero di mezzi compresi tra 10 e 20, solitamente per cinque/sei giorni a settimana. Le procedure di pianificazione del traffico in entrata prevedono che intercorra un lasso di tempo fra gli automezzi in fase di scarico in modo da evitare congestionamenti nelle zone antistanti l'impianto.

Inoltre, l'ubicazione dello stabilimento nell'ambito di una zona industriale dotata di un'ampia viabilità di accesso e zone di parcheggio capienti mitiga di fatto l'impatto sul traffico, rendendo tale aspetto non significativo.

14 OBIETTIVI, TRAGUARDI E PROGRAMMA AMBIENTALE

Come richiamato nella **strategia aziendale legata all'identificazione degli obiettivi**, riportata nella parte generale della presente Dichiarazione Ambientale, l'alta direzione individua le priorità aziendali coerentemente con il Piano Industriale di Herambiente Spa che prevede una strategia di sviluppo ambientale valutata in una logica complessiva. Occorre quindi considerare il ritorno ambientale del programma di miglioramento di Herambiente in un'ottica d'insieme. Di seguito sono riportati gli obiettivi di miglioramento raggiunti ed a seguire quelli in corso e previsti per il triennio di validità della registrazione EMAS.

Obiettivi raggiunti

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resn Ciniettivo	Rif. Budget/ impegno	Scadenze
Termovalorizzatore Pozzilli	Ottimizzazione processi, attività e risorse Tutela dell'ambiente Sicurezza sul lavoro	Gestione del processo Emissioni diffuse	Ridurre ed ottimizzare la gestione delle polveri in fase di scarico attraverso l'implementazione di un nuovo sistema di macinazione che riduca il ricorso agli scarichi in fase di emergenza e che migliori le emissioni diffuse all'interno dello stabilimento.	Resp. Impianto	Euro circa 30.000- 40.000	2022 Prevista ultimazione nel 2023. Obiettivo raggiunto.
Termovalorizzatore Pozzilli	Ottimizzazione processi, attività e risorse. Sicurezza sul lavoro.	Gestione del processo	Migliorare ulteriormente il monitoraggio del processo di termovalorizzazione, la tracciabilità dei dati di gestione e la manutenzione dell'impianto attraverso l'implementazione della tecnologia NFC che garantirà di automatizzare i processi, informatizzare le rilevazioni, comunicare istantaneamente potenziali NC dei parametri, operare un maggior controllo sulle attività in campo con una migliore efficienza nell'impiego delle risorse.	Resp. BU WE Resp. Impianto	Euro 50.000	2023-2024 Il sistema è stato implementato e avviato a settembre 2023, obiettivo raggiunto.
Termovalorizzatore Pozzilli	Ottimizzazione processi, attività e risorse. Miglioramento continuo e sostenibilità.	Gestione del processo Emissioni in atmosfera	Migliorare il processo di combustione rifiuti attraverso l'installazione di nuovi ugelli per l'immissione di aria secondaria allo scopo di migliorare la turbolenza nella camera di combustione e ridurre i picchi emissivi di CO. 1) Realizzazione; 2) Valutazione dei risultati.	Resp. BU WE Resp. Impianto	Euro 120.000	1) 2022-2023 2) 2023-2024 L'obiettivo si intende raggiuto in quanto gli ugelli sono stati installati e successivamente sono state implementate le nuove logiche software per l'affinamento della regolazione dell'aria primaria e secondaria, da cui si evince un lieve miglioramento che tuttavia non risulta essere soddisfacente rispetto agli esiti attesi.
Termovalorizzatore Pozzilli	Ottimizzazione processi,	Efficientamento energetico	Ottimizzazione del sistema dell'aria compressa e riduzione dei consumi energetici attraverso l'installazione di un nuovo compressore con inverter in sostituzione di uno dei tre	Resp. BU Resp. Impianto	Euro 40.000	1) 2020-2021 2) 2022

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
	attività ed energia Risparmio energetico		compressori esistenti. Oltre ad una migliore efficienza della nuova macchina, la regolazione con inverter consentirà di ridurre notevolmente le ore di funzionamento "a vuoto", con conseguente risparmio energetico stimabile in 80	Referente Progetti Energetici		3) 2024 1) Raggiunto, prevista installazione di nuovo
	Miglioramento		MWh/anno.			compressore entro 2022.
	continuo e sostenibilità		1) Progettazione.			2) Installato a novembre 2022.
	Tutela		2) Realizzazione.			3) Anche se la riduzione non ha raggiunto il target
	dell'ambiente		3) Risultati attesi.			inizialmente stimato, l'obiettivo si intende conseguito in quanto l'installazione del nuovo compressore ha consentito una riduzione dei consumi energetici pari a circa 65MWh/anno corrispondenti ad una riduzione del 17% del consumo annuo, relativo al funzionamento dell'apparecchiatura, constatato anche tramite l'indicatore di riferimento (consumo energetico al compressa/carico termico).
Termovalorizzatore	Ottimizzazione	Gestione del	Migliorare lo scambio termico della caldaia attraverso	Resp. BU WE	Euro	1)-2) 2023-2024
risorse	attività e	ttività e sorse	l'installazione di un sistema di pulizia con docce di lavaggio che, grazie al getto d'acqua a bassa pressione sui banchi convettivi, garantisca una maggiore efficienza del processo.	Resp. Impianto	120.000	Obiettivo raggiunto, il nuovo sistema è stato installato nel mese di maggio 2024.
	continuo e		1) Progettazione.			
	sostenibilità.		2) Acquisto e installazione.			

Obiettivi in corso

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
Termovalorizzatore		Emissione in	Migliorare il sistema di trattamento fumi attraverso un	Resp. BU	Euro circa	1) - 2) 2021-2022
Pozzilli	processi, attività e risorse	atmosfera	upgrading del sistema di trattamento Denox SNCR, da conseguire e realizzare in step successivi attraverso la	Resp. Impianto	700.000- 800.000	3) 2023
	Miglioramento modifica del reagente utilizzato. Il primo step prevede la sperimentazione con utilizzo di urea solida con sostenibilità granulometria diversa rispetto a quella ad oggi utilizzata;		4)-5) 2024-2025			
	Tutela dell'Ambiente	il secondo step prevede la modifica dell'attuale sistema con utilizzo di urea liquida. La modifica del sistema per il funzionamento con urea liquida prevederà l'installazione di nuovi serbatoi e relative pompe di iniezione. L'obiettivo dell'upgrading è quello di conseguire una riduzione dei reagenti utilizzati e garantire migliori		1) -2) -3) Nel corso del 2021 si è provveduto ad eseguire la sperimentazione prevista utilizzando sia l'urea solida a minor granulometria che l'urea liquida. L'utilizzo dell'urea liquida, tuttavia non ha restituito gli esiti attesi a differenza invece dell'urea solida a granulometria minore che ha dato buoni risultati.		
			prestazioni ambientali sul trattamento degli inquinanti ed in particolare sugli NOx.			Alla luce della sperimentazione condotta l'obiettivo viene pertanto riformulato con l'impiego dell'urea
			Sperimentazione con urea solida a minor granulometria.			solida a diversa granulometria, non prevedendo più lo step 3) di progettazione con l'urea liquida e la modifica del sistema.
		2) Verifica risultati attesi.		Si prevede inoltre di estendere l'obiettivo attraverso		
			3) studio per misura T° mappatura 2D			l'implementazione di un sistema di misura della
			4) Realizzazione e analisi dei risultati dopo studio innovativo, punto 3.			Temperatura in 2D in post-combustione al fine di migliorare la distribuzione delle arie di combustione ed individuare il punto migliore per l'iniezione
			5) Risultati attesi: riduzione di circa il 5% delle emissioni di NOx rispetto alle concentrazioni 2020			dell'urea. Il punto 3 viene pertanto ridefinito con l'implementazione di tale sperimentazione.
						4) Nel corso del 2024 è stato acquistato e installato il sistema di misura della Temperatura in 2D. Risulta in corso l'analisi dei risultati.
Termovalorizzatore		Emissioni in	Installazione di analizzatori di nuova generazione per	Resp. BU WE	Euro 200.000	1) 2024-2025
Pozzilli	li dell'ambiente atmosfera l'upgrading del nuovo sistema di monitoraggio in Resp. Impianto Ottimizzazione Gestione del continuo delle emissioni (SME) in atmosfera. I nuovi processi, attività processo analizzatori garantiscono un livello di accuratezza e di		2) 2025			
	e risorse. Miglioramento continuo e	intro	rilevabilità ancora più spinto e adeguato ai nuovi dettami introdotti dal nuovo BRefs (BAT reference documents) per l'incenerimento dei rifiuti.			In corso.
	sostenibilità.		1) Nulla Osta Enti.			
			2) Acquisto ed installazione.			

Campo di applicazione	Rif. Politica Ambientale	Aspetto	Descrizione Obiettivo/Traguardo	Resp. Obiettivo	Rif. Budget/ impegno	Scadenze
Termovalorizzatore	Tutela	Emissioni in	Determinare il reale impatto dei gas climalteranti in	Resp. BU WE	Euro 70.000	2024-2025
Pozzilli	dell'ambiente Ottimizzazione processi, attività e risorse. Miglioramento continuo e sostenibilità.	atmosfera	atmosfera tramite l'installazione di un campionatore per la misura al camino della CO2 di origine biogenica (rinnovabile).	Resp. Impianto Resp. IdP		In corso.
Termovalorizzatore		Efficientamento	Efficientamento energetico del sito attraverso l'acquisto	Resp. BU WE	Euro 70.000	1) 2025
Pozzilli	processi, attività e risorse.	energetico	e l'installazione di un nuovo motore per il ventilatore di coda.	Resp. Impianto		2) 2026
	Miglioramento continuo e sostenibilità.		Risultati attesi: riduzione del 5% dei consumi energetici legati relativi all'apparecchiatura.			3) 2027
	Tutela dell'Ambiente.		1) Acquisto.			
			2) Installazione.			
			3) Risultati attesi.			

GLOSSARIO

Acque di prima pioggia: i primi 2,5 – 5 mm. di acqua meteorica di dilavamento uniformemente distribuita su tutta la superficie scolante servita dal sistema di drenaggio. Si assume che tale valore si verifichi in un periodo di tempo di 15 minuti.

Acque di seconda pioggia: acqua meteorica di dilavamento derivante dalla superficie scolante servita dal sistema di drenaggio e avviata allo scarico nel corpo recettore in tempi successivi a quelli definiti per il calcolo delle acque di prima pioggia (dopo 15 minuti).

AIA (Autorizzazione Integrata Ambientale): provvedimento che autorizza l'esercizio di una installazione rientrante fra quelle di cui all'articolo 4, comma 4, lettera c) del D.Lgs. 152/2006 e s.m.i., o di parte di essa a determinate condizioni che devono garantire che l'installazione sia conforme ai requisiti di cui al Titolo III-bis della Parte Seconda del D.Lgs. 152/2006 e s.m.i..

Ambiente: contesto nel quale un'organizzazione opera, comprendente l'aria, l'acqua, il terreno, le risorse naturali, la flora, la fauna, gli esseri umani e le loro interrelazioni.

Aspetto ambientale: elemento delle attività, dei prodotti o dei servizi di un'organizzazione che interagisce o può interagire con l'ambiente.

BAT (Best Available Techniques): migliori tecniche disponibili ovvero le tecniche più efficaci, tra quelle tecnicamente realizzabili ed economicamente sostenibili nell'ambito del relativo comparto industriale, per ottenere un elevato livello di protezione dell'ambiente nel suo complesso.

BOD₅ (biochemical oxygen demand): domanda biochimica di ossigeno, quantità di ossigeno necessaria per la decomposizione ossidata della sostanza organica per un periodo di 5 giorni.

Carbone attivo: carbone finemente attivo caratterizzato da un'elevata superficie di contatto, sulla quale possono essere adsorbite sostanze liquide o gassose.

CO₂ (anidride carbonica): gas presente naturalmente nella atmosfera terrestre in grado di assorbire la radiazione infrarossa proveniente dalla superficie terrestre procurando un riscaldamento dell'atmosfera conosciuto con il nome di effetto serra.

COD (chemical oxygen demand): domanda chimica di ossigeno. Ossigeno richiesto per l'ossidazione di sostanze organiche ed inorganiche presenti in un campione d'acqua.

Compostaggio: processo di decomposizione e di umificazione di un misto di materie organiche da parte di macro e microrganismi in particolari condizioni (T, umidità, quantità d'aria).

CSS (Combustibile Solido Secondario): combustibile solido prodotto da rifiuti che rispetta le caratteristiche di classificazione e di specificazione individuate delle

norme tecniche UNI CEN/TS 15359 e successive modifiche ed integrazioni; fatta salva l'applicazione dell'articolo 184-ter, il combustibile solido secondario, è classificato come rifiuto speciale (Art. 183 cc), D.Lgs. 152/2006 e s.m.i.).

Disoleazione: processo di rottura delle emulsioni oleose. Gli oli sono separati dalle soluzioni acquose con trattamenti singoli o combinati di tipo fisico, chimico e meccanico.

EER (Elenco Europeo Rifiuti): catalogo nel quale sono identificati tramite un codice tutti i rifiuti, istituito con la decisione 2000/532/CE e s.m.i. e riprodotto anche nell'Allegato D alla Parte Quarta del D.Lgs. 152/06 e s.m.i.. Ogni singolo rifiuto è identificato attraverso un codice numerico univoco a sei cifre.

Effetto serra: fenomeno naturale di riscaldamento dell'atmosfera e della superficie terrestre procurato dai gas naturalmente presenti nell'atmosfera come anidride carbonica, vapore acqueo e metano.

Elettrofiltro: sistema di abbattimento delle polveri dalle emissioni per precipitazione elettrostatica. Le polveri, caricate elettricamente, sono raccolte sugli elettrodi del filtro e rimosse, successivamente, per battitura o scorrimento di acqua.

Filtro a manica: apparecchiatura utilizzata per la depolverazione degli effluenti gassosi, costituita da cilindri di tessuto aperti da un lato.

Filtropressatura: processo di ispessimento e disidratazione dei fanghi realizzato per aggiunta di reattivi chimici.

Gruppo elettrogeno: sistema a motore in grado di produrre energia elettrica, in genere utilizzato in situazioni di assenza di corrente elettrica di rete.

Impatto ambientale: modificazione dell'ambiente, negativa o benefica, causata totalmente o parzialmente dagli aspetti ambientali di un'organizzazione.

IPPC (Integrated Pollution Prevention and Control): "prevenzione e riduzione integrata dell'inquinamento" introdotta dalla Direttiva Comunitaria 96/61/CE sostituita dalla direttiva 2008/1/CE e, successivamente, dalla direttiva 2010/75/CE. La normativa nazionale di recepimento della direttiva IPPC è il D.Lgs. 152/06 e s.m.i. che disciplina il rilascio, l'aggiornamento ed il riesame dell'AIA.

ISO (International Organization for Standardization): Istituto internazionale di normazione che emana standard validi in campo internazionale.

Jar test: test su uno specifico trattamento chimico per impianti di trattamento acque/reflui effettuato in impianto pilota in scala.

PCI (Potere Calorifico Inferiore): quantità di calore, espressa in grandi calorie, che si sviluppa dalla combustione completa di un chilogrammo di combustibile, senza considerare il calore prodotto dalla condensazione del vapore d'acqua.

Piattaforma ecologica: Impianto di stoccaggio e trattamento dei materiali della raccolta differenziata; da tale piattaforma escono i materiali per essere avviati al riciclaggio, al recupero energetico ovvero, limitatamente alle frazioni di scarto, allo smaltimento finale.

Prestazione ambientale: risultati misurabili della gestione dei propri aspetti ambientali da parte dell'organizzazione.

Polverino: polveri raccolte dall'elettrofiltro.

Processo aerobico: reazione che avviene in presenza di ossigeno.

Processo anaerobico: reazione che avviene in assenza di ossigeno.

Processo di biostabilizzazione: processo aerobico controllato di ossidazione di biomasse che determina una stabilizzazione (perdita di fermentescibilità) mediante la mineralizzazione delle componenti organiche più aggredibili.

Reagente: sostanza che prende parte ad una reazione.

Recupero: qualsiasi operazione il cui principale risultato sia di permettere ai rifiuti di svolgere un ruolo utile, sostituendo altri materiali che sarebbero stati altrimenti utilizzati per assolvere una particolare funzione o di prepararli ad assolvere tale funzione (Art. 183 t), D.Lgs. 152/2006 e s.m.i.).

Reg. CE 1221/2009 (EMAS): Regolamento europeo che istituisce un sistema comunitario di ecogestione e audit (eco management and audit scheme, EMAS), al quale possono aderire volontariamente le organizzazioni, per valutare e migliorare le proprie prestazioni ambientali e fornire al pubblico e ad altri soggetti interessati informazioni pertinenti.

Rifiuto: qualsiasi sostanza od oggetto di cui il detentore si disfi o abbia l'intenzione o abbia l'obbligo di disfarsi (Art. 183, 1. a), D.Lgs. 152/2006 e s.m.i.).

Rifiuto pericoloso: rifiuto che presenta una o più caratteristiche di cui all'Allegato I della Parte Quarta del D.Lgs. 152/2006 e s.m.i. (Art. 183, 1. b).

Rifiuti speciali: rifiuti provenienti da attività agricole e agro-industriali, da attività di demolizione e costruzione, da lavorazioni industriali, da lavorazioni artigianali, da attività commerciali, da attività di servizio, da attività di recupero e smaltimento di rifiuti, da attività sanitarie, i veicoli fuori uso (Art. 184, 3), D.Lgs. 152/2006 e s.m.i.).

Rifiuti urbani: rifiuti domestici indifferenziati e da raccolta differenziata, rifiuti indifferenziati e da raccolta differenziata provenienti da altre fonti indicati nell'allegato L-quater prodotti dalle attività riportate nell'allegato L-quinquies, rifiuti di qualunque natura o provenienza, giacenti sulle strade ed aree pubbliche, rifiuti provenienti dallo spazzamento delle strade, rifiuti della manutenzione del verde pubblico, rifiuti provenienti da attività cimiteriale (Art. 183, 1.b-ter), D.Lgs. 152/2006 e s.m.i).

SCR (Selective Catalytic Reduction): riduzione Catalitica Selettiva degli Ossidi di Azoto.

SCNR (Selective Non-Catalytic Reduction): riduzione non-Catalitica Selettiva degli Ossidi di Azoto.

Scorie (da combustione): residuo solido derivante dalla combustione di un materiale ad elevato contenuto di inerti (frazione incombustibile).

Sistema gestione ambientale (SGA): parte del sistema di gestione utilizzata per sviluppare ed attuare la propria politica ambientale e gestire i propri aspetti ambientali.

Sovvallo: residuo delle operazioni di selezione e trattamento dei rifiuti.

Sostanze ozonolesive: sostanze in grado di attivare i processi di deplezione dell'ozono stratosferico.

Stoccaggio: attività di smaltimento consistenti nelle operazioni di deposito preliminare di rifiuti e le attività di recupero consistenti nelle operazioni di messa in riserva di rifiuti (Art. 183 1. aa), D.Lgs. 152/2006).

Sviluppo sostenibile: principio introdotto nell'ambito della Conferenza dell'O.N.U. su Ambiente e Sviluppo svoltasi a Rio de Janeiro nel giugno 1992, che auspica forme di sviluppo industriale, infrastrutturale, economico, ecc., di un territorio, in un'ottica di rispetto dell'ambiente e di risparmio delle risorse ambientali.

TEP (Tonnellate equivalenti di petrolio): unità di misura delle fonti di energia: 1 TEP equivale a 10 milioni di kcal ed è pari all'energia ottenuta dalla combustione di una tonnellata di petrolio.

UNI EN ISO 14001:2015: versione in lingua italiana della norma europea EN ISO 14001. Norma che certifica i sistemi di gestione ambientale che dovrebbero consentire a un'organizzazione di formulare una politica ambientale, tenendo conto degli aspetti legislativi e degli impatti ambientali significativi. La norma sostituisce la UNI EN ISO 14001:2004.

UNI EN ISO 9001:2015: versione in lingua italiana della norma europea EN ISO 9001. Norma che specifica i requisiti di un modello di sistema di gestione per la qualità per tutte le organizzazioni, indipendentemente dal tipo e dimensione delle stesse e dai prodotti forniti. Essa può essere utilizzata per uso interno, per scopi contrattuali e di certificazione. La norma sostituisce la UNI EN ISO 9001:2008.

UNI CEI EN ISO 50001:2011: versione in lingua italiana della norma europea EN ISO 50001. Norma che specifica i requisiti per creare, implementare e mantenere un sistema di gestione dell'energia che consente ad un'organizzazione di perseguire il miglioramento continuo della propria prestazione energetica, comprendendo in questa l'efficienza energetica nonché il consumo e l'uso di energia.

UNI ISO 45001:2018: versione in lingua italiana della norma internazionale ISO 45001 che definisce i requisiti di un sistema di gestione per la salute e sicurezza sul lavoro, secondo quanto previsto dalle normative vigenti e in base ai pericoli e rischi potenzialmente presenti sul luogo di lavoro.

ABBREVIAZIONI

ΑT	Alta Tensione	MT	Media Tensione
BT	Bassa Tensione	PCI	Potere Calorifico Inferiore
CPI	Certificato Prevenzione Incendi	SCIA	Segnalazione Certificata di Inizio Attività ai fini
CTR	Comitato Tecnico Regionale		della sicurezza antincendio
DPI	Dispositivi di Protezione Individuale	SIC	Siti di Importanza Comunitaria
Leq	Media del livello sonoro sul periodo di tempo T	SME	Sistema di Monitoraggio in continuo delle
	considerato		Emissioni
MPS	Materie Prime Secondarie	ZPS	Zone di Protezione Speciale

FATTORI DI CONVERSIONE

Energia elettrica: 1 MWh $_{e}$ = 0,187 tep Gas di petrolio liquefatti (GPL): 1 l = 0,56 kg Energia termica: 1 MWh $_{t}$ = 0,103 tep Gas di petrolio liquefatti (GPL): 1 t = 1,1 tep Energia: 1 Kcal/Nm 3 = 4,1868 KJ/Nm 3 Gasolio: 1 l = 0,84 kg Gas naturale: 1.000 Sm 3 = 0,836 tep Gasolio: 1 t = 1,02 tep

GRANDEZZA	UNITÁ	SIMBOLO
Area	kilometro quadrato	Km²
Carica batterica	Unità formanti colonie / 100 millilitri	Ufc/100 ml
Energia	tonnellate equivalenti petrolio	tep
Potenza * tempo	kiloWatt * ora	kWh
Potenza * tempo	MegaWatt * ora	MWh
Livello di rumore	Decibel riferiti alla curva di ponderazione del tipo A	dB(A)
Peso	tonnellata	t/tonn
Portata	metro cubo / secondo	m³/s
Potenziale elettrico, tensione	volt	V
Potere Calorifico Inferiore	kilocalorie/chilo	kcal/kg
Velocità	metro / secondo	m/s
Volume	metro cubo	m^3
Volume (p=1atm; T = 0°C)	Normal metro cubo	Nm³
Volume (p=1atm; T = 15°C)	Standard metro cubo	Sm ³

INFORMAZIONI UTILI SUI DATI

Fonte dati

Tutti i dati inseriti nella Dichiarazione Ambientale sono ripercorribili su documenti ufficiali (es. certificati analitici, bollette, fatture, dichiarazioni PRTR, Registri di Carico/Scarico, Registri UTF).

Gestione dei dati inferiori al limite di rilevabilità

Se nel periodo di riferimento uno dei valori rilevati risulta inferiore al limite di rilevabilità, per il calcolo della media è utilizzata la metà del limite stesso. Nel caso in cui tutti i valori risultino inferiori al limite di rilevabilità è inserito il suddetto valore nella casella relativa alla media. Se sono presenti limiti di rilevabilità diversi è inserito il meno accurato.

Relazioni con limiti o livelli di guardia

I limiti di legge ed i livelli di guardia si riferiscono ad analisi o rilevazioni puntuali.

Considerata la molteplicità dei dati a disposizione per anno, per questioni di semplificazione espositiva, si è adottata la scelta di confrontare le medie annue con i suddetti limiti.

ALLEGATO 1 – PRINCIPALE NORMATIVA APPLICABILE

Da tenere presente che spesso gli impianti sono soggetti a prescrizioni più restrittive rispetto alla normativa di settore e quindi l'elemento fondamentale diventa l'Autorizzazione Integrata Ambientale, l'Autorizzazione Unica Ambientale o le Autorizzazioni settoriali.

DPCM del 01/03/1991 "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno".

Direttiva 92/43/CE del 21/05/1992 "Relativa alla conservazione degli habitat naturali e seminaturali e della flora e della fauna selvatiche".

Legge n. 447 del 26/10/1995 "Legge quadro sull'inquinamento acustico".

Decreto legislativo n. 209 del 22/05/1999 e s.m.i. "Attuazione della direttiva 96/59/CE relativa allo smaltimento dei policlorodifenili (PCB) e dei policlorotrifenili (PCT)".

Decreto Legislativo n. 231 del 08/06/2001 e s.m.i. "Disciplina della responsabilità amministrativa delle persone giuridiche, delle società e delle associazioni anche prive di personalità giuridica, a norma dell'art. 11 della legge 29 settembre 2000, n. 300".

Decreto Legislativo n. 36 del 13/01/2003 e s.m.i. "Attuazione della direttiva 1999/31/CE, relativa alle discariche di rifiuti". **L.R. 19 Emilia-Romagna del 29 settembre 2003** "Norme in materia di riduzione dell'Inquinamento Luminoso e di risparmio energetico" e successiva Direttiva di Giunta Regionale n. 1732 del 12 novembre 2015 "TERZA direttiva per l'applicazione dell'art.2 della Legge Regionale n. 19/2003".

Decreto Legislativo n. 387 del 29/12/2003 e s.m.i. "Attuazione della Direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità".

Decreto Ministeriale n. 248 del 29/07/2004 "Regolamento relativo alla determinazione e disciplina delle attività di recupero di prodotti e beni di amianto e contenenti amianto".

Regolamento (CE) n. 166 del 18/01/2006 e s.m.i. "Regolamento del Parlamento Europeo e del Consiglio relativo all'istituzione di un registro europeo delle emissioni e dei trasferimenti di sostanze inquinanti che modifica le direttive 91/689/CEE e 96/61/CE del Consiglio".

DPR n. 147 del 15/02/2006 "Regolamento per il controllo e il recupero delle fughe di sostanze lesive della fascia di ozono da apparecchiature di refrigerazione e di condizionamento d'aria e pompe di calore".

Decreto Legislativo n. 152 del 03/04/2006 e s.m.i. "Norme in materia ambientale".

Regolamento (CE) n. 1907 del 18/12/2006 "Regolamento del Parlamento Europeo e del Consiglio concernente la registrazione, la valutazione, l'autorizzazione e la restrizione delle sostanze chimiche (REACH), che istituisce un'Agenzia europea per le sostanze chimiche, che modifica la direttiva 1999/45/CE e che abroga il regolamento (CEE) n. 793/93 del Consiglio e il regolamento (CE) n. 1488/94 della Commissione, nonché la direttiva 76/769/CEE del Consiglio e le direttive della Commissione 91/155/CEE, 93/67/CEE, 93/105/CE e 2000/21/CE".

Decreto Ministeriale del 29/01/2007 "Emanazione di linee guida per l'individuazione e l'utilizzazione delle migliori tecniche disponibili in materia di gestione dei rifiuti, per le attività elencate nell'allegato I del Decreto Legislativo n. 59 del 18/2/2005".

Decreto Legislativo n. 81 del 09/04/08 e s.m.i. "Testo Unico sulla salute e sicurezza sul lavoro".

Regolamento (CE) n. 1272 del 16/12/2008 (CLP) e s.m.i. "Regolamento del Parlamento Europeo e del Consiglio relativo alla classificazione, all'etichettatura e all'imballaggio delle sostanze e delle miscele che modifica e abroga le direttive 67/548/CEE e 1999/45/CE e che reca modifica al regolamento (CE) n. 1907/2006".

Decreto Ministeriale del 18/12/2008 "Incentivazione della produzione di energia elettrica da fonti rinnovabili, ai sensi dell'articolo 2, comma 150 della Legge 24/12/2007".

Decreto Legislativo n. 75 del 29/04/2010 e s.m.i. "Riordino e revisione della disciplina in materia di fertilizzanti, a norma dell'articolo 13 della legge 7 luglio 2009, n. 88".

DPR 151 del 01/08/2011 e s.m.i. "Regolamento recante semplificazione della disciplina dei procedimenti relativi alla prevenzione incendi, concernente la determinazione delle attività soggette alle visite di prevenzione incendi".

Decreto Ministeriale del 06/07/2012 e s.m.i. "Attuazione dell'art. 24 del decreto legislativo 3 marzo 2011, n. 28, recante incentivazione della produzione di energia elettrica da impianti a fonti rinnovabili diversi dai fotovoltaici".

DPR n. 74 del 16/04/2013 "Definizione dei criteri generali in materia di esercizio, conduzione controllo e manutenzione degli impianti termici per la climatizzazione invernale ed estiva degli edifici e per la preparazione di acqua calda per usi igienico sanitari".

Decreto Legislativo n. 46 del 04/03/2014 "Emissioni industriali (prevenzione e riduzione integrate dall'inquinamento) – Attuazione direttiva 2010/75/UE – Modifiche alle Parti II, III, IV e V del D.Lgs 152/2006 ("Codice ambientale").

Decreto Legislativo n. 102 del 04/07/2014 "Attuazione della direttiva 2012/27/UE sull'efficienza energetica, che modifica le direttive 2009/125/CE e 2010/30/UE e abroga le direttive 2004/8/CE e 2006/32/CE".

Circolare Ministero dello Sviluppo Economico del 18/12/2014 "Nomina del responsabile per la conservazione e l'uso razionale dell'energia di cui all'art. 19 della legge 9 gennaio 1991 n. 10 e all'articolo 7 comma 1, lettera e) del decreto ministeriale 28 dicembre 2012".

Legge n. 68 del 22/05/2015 "Disposizioni in materia di delitti contro l'ambiente".

Decreto Legislativo n. 105 del 26/06/2015 "Attuazione della direttiva 12/18/UE relativa al controllo del pericolo di incidenti rilevanti connessi con sostanze pericolose".

Decreto Ministeriale n. 134 del 19/05/2016 "Regolamento concernente l'applicazione del fattore climatico (CFF) alla formula per l'efficienza del recupero energetico dei rifiuti negli impianti di incenerimento".

Decreto Legislativo n. 183 del 15/11/2017 "Limiti alle emissioni in atmosfera degli impianti di combustione medi – Riordino della disciplina delle autorizzazioni alle emissioni in atmosfera di cui alla Parte Quinta del D. Lgs. 152/2006 – Attuazione direttiva 2015/2193/Ue".

Legge n. 167 del 20/11/2017 "Legge europea - Disposizioni in materia di tutela delle acque, emissioni inceneritori rifiuti, energie rinnovabili, sanzioni per violazione regolamento "Clp" su classificazione sostanze e miscele".

Decisione Commissione Ue n. 2018/1147/Ue del 10/08/2018 "Emissioni industriali – Adozione conclusioni sulle migliori tecniche disponibili (Bat) per le attività di trattamento dei rifiuti – Direttiva 2010/75/Ue".

DPR n. 146 del 16/11/2018 "Regolamento di esecuzione del regolamento (UE) n. 517/2014 sui gas fluorurati a effetto serra".

Circolare MinAmbiente n. 1121 del 21/01/2019 "Linee guida per la gestione operativa degli stoccaggi negli impianti di gestione dei rifiuti e per la prevenzione dei rischi - Sostituzione circolare 4064/2018".

Legge n. 12 del 11/02/2019 "Conversione in legge, con modificazioni, del decreto-legge 14 dicembre 2018, n. 135, recante disposizioni urgenti in materia di sostegno e semplificazione per le imprese e per la pubblica amministrazione".

D.M. n. 95 del 15/04/2019 Regolamento recante le modalità per la redazione della relazione di riferimento di cui all'articolo 5, comma 1, lettera v-bis) del decreto legislativo 3 aprile 2006, n. 152.

Decisione di esecuzione (UE) 2019/2010 della Commissione del 12/11/2019 che stabilisce le conclusioni sulle migliori tecniche disponibili (BAT) a norma della direttiva 2010/75/UE del Parlamento europeo e del Consiglio per l'incenerimento dei rifiuti.

Legge n. 128 del 02/11/2019 "Conversione in legge, con modificazioni, del decreto-legge 3 settembre 2019, n. 101, recante disposizioni urgenti per la tutela del lavoro e per la risoluzione di crisi aziendali".

Delibera Consiglio nazionale Snpa n. 61 del 27/11/2019 Approvazione del manuale "Linee guida sulla classificazione dei rifiuti".

Decreto Legislativo n. 163 del 05/12/2019 "Disciplina sanzionatoria per la violazione delle disposizioni di cui al regolamento (UE) n. 517/2014 sui gas fluorurati a effetto serra e che abroga il regolamento (CE) n. 842/2006".

Decreto Legislativo n. 116 del 03/09/2020 "Attuazione della direttiva (UE) 2018/851 che modifica la direttiva 2008/98/CE relativa ai rifiuti e attuazione della direttiva (UE) 2018/852 che modifica la direttiva 1994/62/CE sugli imballaggi e i rifiuti di imballaggio".

Decreto Legislativo n. 118 del 03/09/2020 "Attuazione degli articoli 2 e 3 della direttiva (UE) 2018/849, che modificano le direttive 2006/66/CE relative a pile e accumulatori e ai rifiuti di pile e accumulatori e 2012/19/UE sui rifiuti di apparecchiature elettriche ed elettroniche".

Decreto Legislativo n. 121 del 03/09/2020 "Attuazione della direttiva (UE) 2018/850, che modifica la direttiva 1999/31/CE relativa alle discariche di rifiuti".

Decreto direttoriale Mite n. 47 del 9 agosto 2021 "Approvazione delle Linee guida sulla classificazione dei rifiuti di cui alla delibera del Consiglio del Sistema nazionale per la protezione dell'Ambiente del 18 maggio 2021 n. 105".

Legge n. 108 del 29/07/2021 "Conversione in legge, con modificazioni, del Decreto-Legge 31 maggio 2021, n.77, recante governance del Piano nazionale di ripresa e resilienza e prime misure di rafforzamento delle strutture amministrative e di accelerazione e snellimento delle procedure".

D.M. 26 luglio 2022 "Approvazione di norme tecniche di prevenzione incendi per gli stabilimenti ed impianti di stoccaggio e trattamento rifiuti."

D.M. n. 152 del 27/09/2022 "Regolamento che disciplina la cessazione della qualifica di rifiuto dei rifiuti inerti da costruzione e demolizione e di altri rifiuti inerti di origine minerale, ai sensi dell'articolo 184-ter, comma 2, del Decreto Legislativo 3 aprile 2006, n. 152."

D.M. n. 59 del 04/04/2023 "Disciplina del sistema di tracciabilità dei rifiuti e del registro elettronico nazionale per la tracciabilità dei rifiuti ai sensi dell'articolo 188-bis del decreto legislativo 3 aprile 2006, n. 152".

D.P.C.M. del 26/01/2024 "Approvazione del modello unico di dichiarazione ambientale per l'anno 2024".

Regolamento (UE) n. 573 del 07/02/2024 "Regolamento del Parlamento europeo e del Consiglio sui gas fluorurati a effetto serra, che modifica la direttiva (UE) 2019/1937 e che abroga il regolamento (UE) n. 517/2014".

Regolamento (UE) n. 590 del 07/02/2024 "Regolamento del Parlamento europeo e del Consiglio sulle sostanze che riducono lo strato di ozono, e che abroga il regolamento (CE) n. 1005/2009".

ALLEGATO 2 – COMPLESSI IMPIANTISTICI REGISTRATI EMAS

Sito	Impianti presenti	Data registrazione	N° registrazione
Complesso impiantistico di Via Bocche 20, Baricella (BO)	- Discarica	09/04/2002	IT-000085
Complesso impiantistico di Via Diana 44, Ferrara (FE)	- Termovalorizzatore	07/10/2004	IT-000247
Complesso impiantistico di Via Raibano 32, Coriano (RN)	- Termovalorizzatore- Attività di trasbordo- Impianto di selezione e recupero	03/10/2007	IT-000723
Complesso impiantistico di Via Shakespeare 29, Bologna (BO)	- Chimico-fisico	12/06/2009	IT-001111
Complesso impiantistico S.S. Romea Km 2,6 n° 272, Ravenna (RA)	 Chimico-fisico Discariche Imp. Disidratazione fanghi – Disidrat Impianti di produzione di energia elettrica da biogas 	16/05/2008	IT-000879
Complesso impiantistico di Via Pediano 52, Imola (BO)	Discarica Impianto trattamento meccanico biologico Impianti produzione di energia elettrica da biogas	20/10/2008	IT-000983
Complesso impiantistico di Via Traversagno 30, Località Voltana, Lugo (RA)	DiscaricaImpianto di compostaggio e digestore anaerobicoImpianto selezione e recupero	12/06/2009	IT-001116
Complesso impiantistico di Via Rio della Busca, Località Tessello, San Carlo (FC)	 Discarica Impianto di compostaggio e digestore anaerobico Impianti produzione di energia elettrica da biogas 	12/06/2009	IT-001117
Complesso impiantistico di Via Tomba 25, Lugo (RA)	- Chimico-fisico	23/10/2009	IT-001169
Complesso impiantistico di Via San Martino in Venti 19, Cà Baldacci Rimini (RN)	- Impianto di compostaggio e digestore anaerobico	12/12/2011	IT-001396
Complesso impiantistico di Via Baiona 182, Ravenna (RA)	 Inceneritore con recupero energetico Inceneritore di sfiati non contenenti cloro Chimico-fisico e biologico di reflui industriali e rifiuti liquidi 	28/04/2011	IT-001324
Complesso impiantistico di Via Grigioni 19- 28, Forlì (FC)	- Termovalorizzatore - Attività di trasbordo - Piattaforma ecologica	12/12/2011	IT-001398
Complesso impiantistico di Via Cavazza 45, Modena (MO)	- Termovalorizzatore - Chimico-fisico	22/10/2012	IT-001492
Complesso impiantistico di Via dell'energia, Zona Industriale di Pozzilli (IS)	- Termovalorizzatore	20/11/2009	IT-001201
Complesso impiantistico di Via Selice 12/A – Mordano (BO)	- Impianto selezione e recupero	27/02/2009	IT-001070
Complesso impiantistico di Via Caruso 150 – Modena (MO)	- Impianto selezione e recupero	04/04/2012	IT-001436
Complesso di Via Finati 41/43 Ferrara	- Impianto selezione e recupero	04/10/2011	IT-001378
Complesso impiantistico di Via del Frullo 3/F Granarolo dell'Emilia (BO)	- Impianto selezione e recupero	28/05/2015	IT-001709
Complesso impiantistico Località Cà dei Ladri 25, Silla di Gaggio Montano (BO)	- Discarica - Impianto produzione di energia elettrica da biogas	13/09/2011	IT-001375
Complesso impiantistico di Via Gabbellini snc, Serravalle Pistoiese (PT)	- Discarica - Chimico-fisico e biologico	03/10/2007	IT-000715
Complesso impiantistico di Via T. Tasso 21/23 Castiglione delle Stiviere (MN)	- Impianto selezione e recupero	21/01/2021	IT-002044
Complesso impiantistico di Sant'Agata Bolognese (BO)	 Impianto di compostaggio e digestione anaerobica con produzione di biometano Discarica 	25/10/2022	IT-002179
Impianto di Montale - Via Walter Tobagi, 16 - Montale (PT)	- Termovalorizzatore	28/10/2015	IT-001737

RIFERIMENTI PER IL PUBBLICO

HERA SPA

Sede legale: Viale Berti Pichat 2/4

40127 Bologna www.gruppohera.it

Presidente: Cristian Fabbri

Amministratore Delegato: Orazio Iacono

HERAMBIENTE SPA

Sede legale: Viale Berti Pichat 2/4

40127 Bologna

Presidente: Filippo Brandolini

Amministratore Delegato: Andrea Ramonda

Responsabile QSA: Nicoletta Lorenzi

Responsabile Direzione Produzione: Paolo Cecchin Responsabile Direzione Mercato Utilities: Fabrizio Salieri Responsabile BU Termovalorizzatori: Stefano Tondini

Coordinamento progetto e realizzazione:

Responsabile Sistemi di Gestione Integrati: Francesca Ramberti

Realizzazione:

Sistemi di Gestione Integrati: Nicoletta Fabbroni

Responsabile Termovalorizzatore Pozzilli: Tonino Lombardi

Supporto alla fase di realizzazione: Michele Bertone, Raffaele Chianese.

Si ringraziano tutti i colleghi per la cortese collaborazione.

Per informazioni rivolgersi a:

Responsabile Sistemi di gestione integrati

Francesca Ramberti

e-mail: qsa.herambiente@gruppohera.it

La prossima dichiarazione sarà predisposta e convalidata entro due anni dalla presente. Annualmente verranno predisposti e convalidati (da parte di un verificatore accreditato), gli aggiornamenti della Dichiarazione Ambientale, che conterranno i dati ambientali relativi all'anno di riferimento e il grado di raggiungimento degli obiettivi prefissati.

Informazioni relative alla Dichiarazione Ambientale:

Dichiarazione di rifermento	Data di convalida dell'Ente Verificatore	Verificatore ambientale accreditato e n° accreditamento	
Complesso Impiantistico di Via dell'Energia, Pozzilli (IS)	26/05/2005	BUREAU VERITAS CERTIFICATION HOLDING SAS – ITALY BRANCH	
	26/05/2025	N° IT-V-0006	
		Viale Monza 347 – 20126 Milano (MI)	